
THE DESIGN OF A SOFTWARE SYSTEM FOR A SMALL SPACE SATELLITE

BY

MICHAEL J. DABROWSKI

B.S., University of Illinois at Urbana-Champaign, 2003

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Electrical Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2005

Urbana, Illinois

CCA FORM

TABLE OF CONTENTS

1. INTRODUCTION..1
1.1 Overview...1
1.2 Small Satellites..1
1.3 CubeSat Satellites..2
1.4 The University of Illinois ION Project..3

2. DESIGN PROCESS OF THE ION SOFTWARE SYSTEM.....................6
2.1 Overview of the Design Process..6
2.2 Physical Components Onboard the ION Satellite...6

2.2.1 Listing of components...7
2.2.2 Discussion...13

2.3 Determined ION Operational Requirements...14
2.3.1 Introduction...14
2.3.2 ION operational requirements...15
2.3.3 Discussion...16

2.4 Determined Software Functional Requirements..17
2.4.1 Tier 1 - Direct requirements..18
2.4.2 Tier 2 - Secondary requirements...20
2.4.3 Tier 3 - Supporting requirements..21

2.5 Resulting ION Satellite Interface..22
2.5.1 Introduction...22
2.5.2 ION satellite operations...23
2.5.3 Discussion...24

2.6 Summary of the Design Process..25

3. ION SOFTWARE SYSTEM DESIGN..26
3.1 Overview of the System Design..26
3.2 Device Drivers...30

3.2.1 Overview of device drivers...30
3.2.2 Introduction...30
3.2.3 Device driver design...33
3.2.4 Discussion...37
3.2.5 Summary...37

3.3 System Software..38
3.3.1 Overview of system software..38
3.3.2 Introduction...38
3.3.3 System software organization...39
3.3.4 The Startup Sequence..39
3.3.5 The Application Manager...41
3.3.6 The Reset Mode..44
3.3.7 Discussion...45
3.3.8 Summary...46

3.4 Applications...47
3.4.1 Overview of applications..47

iii

3.4.2 Introduction...47
3.4.3 Application design..47
3.4.4 Work units, config files, and data files...49
3.4.5 Application behavior...50
3.4.6 Discussion...52
3.4.7 Summary...54

3.5 Supporting Software..54
3.5.1 Overview of supporting software..54
3.5.2 Introduction...54
3.5.3 Explanation and justification of supporting software.............................55
3.5.4 ION OS Supporting Software...55
3.5.5 Library Supporting Software...57
3.5.6 EEPROM Supporting Software..57
3.5.7 Discussion...58
3.5.8 Summary...59

3.6 Discussion of the System Design..59
3.7 Summary of the System Design..61

APPENDIX A : FURTHER TECHNICAL DETAILS............................63
A.1 Software Reliability and Safety Features..63

A.1.1 Remote memory access..63
A.1.2 NOP sleds...63
A.1.3 Software upload...63
A.1.4 System state checking..64
A.1.5 Software watchdog timer...64
A.1.6 Alarms and callbacks...65
A.1.7 Reset Mode..65
A.1.8 System wide error reporting...65

A.2 Details of Development...66

APPENDIX B : LESSONS LEARNED...68
B.1 Difficulties Encountered...68

B.1.1 Inheritance of project with no mission definition......................68
B.1.2 Regular student turnaround...69
B.1.3 Use of a single central computer and "dumb devices"..............69
B.1.4 Difficulties due to nonstandard hardware..................................70
B.1.5 Difficulties in getting hardware working...................................70
B.1.6 Lack of embedded development experience..............................71
B.1.7 Changing development timeline..71
B.1.8 Bad interface definitions..72
B.1.9 Duration and scope of project..72
B.1.10 Ineffective data organization...73
B.1.11 Aloof faculty involvement...73
B.1.12 Difficulties in testing...74

B.2 General Comments..74

REFERENCES..77

iv

1. INTRODUCTION

1.1 Overview

This paper will cover the design and implementation of a software system for a small

satellite. The software system developed is responsible for performing all of the operations of

the satellite including control of onboard hardware devices, scheduling of operations,

maintenance of data, and communications with a ground station on Earth. The system developed

was designed and built by a small group of students over the course of eighteen months for the

ION satellite as part of the Illinois Tiny Satellite Initiative.

First, the design process of the ION satellite software system leading up to the resulting

satellite interface will be discussed. The details of the design and its implementation will then

be covered, followed by an overall analysis of the system. The paper will conclude with further

technical details, recommendations for future small satellite developers, and comments on

general difficulties encountered.

1.2 Small Satellites

In the past few years much of the attention of the space industry has shifted towards the

development of small satellites. These satellites, often called picosats, nanosats, or microsats are

generally less than 200 kilograms and, in many cases, are as little as 10-50 kilograms. Such

satellites, which range in size from refrigerators to small soda cans, offer many potential benefits

over traditional space satellites [1].

Traditional space satellites are typified by geostationary communications satellites which

range in mass from 1000 to 4000 kilograms [1]. Such satellites require millions of dollars to

develop and have historically been large expensive projects requiring five to ten years to

construct. Because of the enormous costs and time allocated to such projects, very little risk

tolerance exists. As a result, very little room exists for innovation and such satellites are often

limited to the use of space-proven, though often outdated, technologies. Furthermore, an

enormous amount of money and effort is placed into the development of redundant systems and

the maintenance of outdated techniques and procedures. As a result of the resources required, the

development of traditional satellites has historically been limited to first world counties with

large military and commercial budgets.

1

Small satellites provide an amazing alternative to traditional space satellites. Such

projects are driven by a "smaller, faster, better, cheaper, smarter" mentality which allows for a

fully functioning space satellite to be built in a fraction of the time and cost of a traditional space

satellite [1]. Often, such satellites may be designed, built, and launched within a period of six to

thirty-six months with labor investments of a few to ten man-years.

As a result of the inexpensive nature and short development time of small satellites,

project developers are more willing to accept higher risks and an increased probability of mission

failure. The designs of small satellites are more open to the use of new, unproven technologies.

Often such technologies not only reduce the size, weight, and cost of the satellite, but also greatly

increase the available functionality. Small satellite projects are also able to accept higher risk

payloads, allowing for more interesting satellite experiments. Furthermore, as a result of

resource limitations, small satellite developers are often forced to experiment with new and

innovative designs, techniques, and procedures.

One of the driving philosophies of small satellite design is the use of standard, easy to

use, commercial off-the-shelf (COTS) components designed for nonspace applications. This

allows for fast and inexpensive construction, reducing satellite complexity. The use of

standardized platforms and reusable components further shortens the development process.

The low cost and limited time investment required to construct small satellites greatly

reduces the cost of entry to space. Such projects make space much more accessible to amateurs,

researchers, entrepreneurial efforts, and small governments [2], [3]. Over the past decade an

enormous variety of small satellites have been developed including a large number of

educational efforts by universities [4] - [7].

1.3 CubeSat Satellites

To both further speed the development process and aid in obtainment of a launch

opportunity, many university small satellite projects choose to follow the CubeSat specification

[8]. This standard outlines a set of physical launch interfaces as well as mechanical requirements

for a small satellite.

According to the specification, a standard CubeSat satellite is a 10 x 10 x 10 cm cube

weighing at most one kilogram. Currently, up to three such cubes may be combined, creating a

single satellite of dimensions 10 x 10 x 30 cm with a maximum mass of 3 kg.

2

In addition to providing a standard launch interface, the CubeSat program at the

California Polytechnic State University creates a community for developers of educational

satellites, provides satellite integration services, and attempts to provide launch opportunities

[9]. By combining multiple small satellites together in a single package through the CubeSat

program, universities are able to present themselves as a more attractive customer to launch

providers.

Small satellite projects such as CubeSat often are troubled by a similar set of difficulties

and limitations. Educational projects are often limited in terms of time, student experience,

financial budget, and development infrastructure. Payloads are very limited in terms of physical

space available due to the extremely restricted size and mass of a CubeSat satellite. This

seriously restricts payloads requiring large optics or bulky components.

The limited surface area of a CubeSat restricts the amount of solar power that may be

generated, restricting power available for computation, communications, and payloads.

Restrictions on space, time, and power necessitate that CubeSat satellites incorporate limited

payloads, slow communications links, little redundancy, and minimal information processing

capabilities. Nevertheless, many CubeSat satellites are surprisingly complex and ambitious.

One such satellite is the ION satellite constructed at the University of Illinois.

1.4 The University of Illinois ION Project

The ION satellite is a two-cube CubeSat satellite constructed at the University of Illinois

over the course of 4 years. The primary mission of the ION satellite is to provide a large

interdisciplinary educational project for undergraduate engineering students.

The ION satellite project was run as an interdisciplinary engineering class in which senior

year students typically participated for two semesters. The development of the satellite was

entirely student driven with all work performed by five to six teams of three to five students and

two teaching assistants. Three faculty advisers provided both active mentorship and logistical

and financial support. ION is currently expected to be launched into a 650-km low earth orbit

along with 13 other CubeSat satellites.

While built largely as an educational project for students, the ION satellite also has a

number of science and technology mission objectives. First, ION is to measure an oxygen

airglow brightness in the Earth's upper atmosphere using a filtered photometer. Oxygen atoms

3

located at an altitude of 90 km recombine to emit a dim glow of light not visible from the ground

due to atmospheric absorption. Oxygen density can be determined by measurement of this

emission which brightens and dims as a result of disturbances from waves in the atmosphere.

Satellite mapping will aid in understanding wave energy transfer across large areas of the Earth’s

atmosphere. This will contribute to knowledge of atmospheric dynamics in the upper

atmosphere.

Second, ION is to test a microvacuum arc thruster (µVAT) system. These thrusters

operate by forming an electric arc across an anode and a cathode. Cathode material is vaporized

and ejected at a high velocity, thereby producing thrust. The successful demonstration of this

technology will aid in the development of an efficient and versatile low-mass satellite propulsion

system [10].

Third, ION is to test the use of a black and white CMOS camera for photography of the

Earth. Results from this imaging system will guide the design of imaging systems onboard

future small satellites.

Finally, ION will attempt to demonstrate the use of an active attitude control system.

Magnetic torque coils will generate magnetic fields which will interact with the Earth's field,

creating the necessary torque to orient the satellite into favorable positions. Feedback on satellite

orientation will be provided by a collection of sensors. The successful demonstration of active

attitude control onboard a CubeSat satellite will be critical in establishing small satellites as a

viable platform for payloads requiring a high degree of control over satellite orientation.

In addition to the sensors and actuators previously detailed, the ION space satellite

incorporates a number of additional components. ION is powered by solar panels and batteries.

Communication with a ground station on Earth is made possible through the use of a

communications system composed of a radio and a modem. All operations performed by ION

are controlled by a flight computer.

This thesis will outline the design and implementation of the software system running

onboard the ION satellite. The software's primary purpose is to fulfill all the mission objectives

of the satellite. The process of designing the software system will be traced in Chapter 2. This

discussion will generally be nontechnical and will end with a description of the resulting method

of ION satellite operations. Chapter 3 will give a more technical overview of the ION software

implementation, including in-depth discussion of the four major components of the software

4

system. Further technical details of the software system as well as a nontechnical discussion of

lessons learned will be detailed in Appendices A and B.

5

2. DESIGN PROCESS OF THE ION SATELLITE SOFTWARE

SYSTEM

2.1 Overview of the Design Process

In this chapter the design process of the ION satellite software system will be outlined.

When development of the software system began, no detailed mission specification for the

satellite existed. Instead, the details of the satellite's mission had to be “reverse engineered” from

the collection of hardware onboard ION. This hardware, in addition to the satellite mission

determined, suggested the implementation of a generic scheduling system which treated the ION

satellite as a passive collection of instruments. As a result, all operations performed by the ION

satellite must be explicitly scheduled by operators on the ground.

First, the physical electronics hardware onboard ION will be described. A knowledge of

the hardware onboard ION, along with its functionality and limitations, will allow for the formal

specification of a general set of satellite mission requirements. The software requirements of the

satellite will then be determined as a result of both the electronics hardware present and the

determined mission specification. These software requirements will suggest an appropriate

software model to be implemented. The details of implementation will be discussed in Chapter

3. This chapter will conclude with a description of the resulting interface to the satellite and a

description of how the ION satellite is operated.

2.2 Physical Components Onboard the ION Satellite

To help clarify the mission requirements of the ION satellite and illustrate what problems

the ION software system had to solve, the hardware components onboard ION, along with their

operation, functions, and interface are described. Nearly all of these components are found to

require very detailed control from the single flight computer onboard the satellite. This

complication, termed the “Dumb Device” problem, suggests that the operation of hardware

devices will be a primary responsibility of the software system running on the SID flight

computer. The unique nature of the SID computer suggests that the majority of the required

software would need to be developed from scratch.

6

2.2.1 Listing of components

In order to fullfill the general mission that was pictured for the ION satellite, a variety of

electronics were placed onboard. These electronic components are grouped into five main areas:

the flight computer, components specific to the scientific payload of the satellite, components

specific to satellite attitude determination and control, components specific to communications

with a ground station on Earth, and components which provide fundamental electrical support.

Nearly all of the electronics components directly interface to the flight computer as illustrated in

Figure 2.1.

The flight computer

Nearly all space satellites have at least one flight computer devoted to performing tasks

related to communications and data handling. Many satellites have additional computers devoted

to the operation of specific subsystems or tasks such as attitude control or scientific payloads.

This allows for simple delegation of operations and may provide redundancy in the event of

computer failure.

The SID

The ION satellite contains only one computer. A central computer known

as the Small Integrated Datalogger (SID) performs all processing onboard ION.

This credit card sized single-board-computer is a first revision of a commercial

product and is built around a RISC microprocessor running at 7 MHz. The SID

computer has a number of features including: 256 KB of EEPROM, 1 MB of

RAM memory, 8 MB of nonvolatile flash storage, 2 serial ports (UARTs), 3 real

time clocks, 32 channels of analog input, 24 general purpose input/output lines, 4

power output lines, built in latchup protection, and a built-in hardware watchdog

timer [11].

Nearly all of the hardware onboard ION interfaces to the SID and must be

directly controlled by this computer.

Payload components

Most space satellites have a specific mission performed by their main payload

7

components. The general scientific mission of the ION satellite consists of measurement of an

oxygen emission from the Earth's upper atmosphere, testing of microvavuum arc thrusters, and

photography of the Earth. The components below provide the functionality needed to perform

ION's scientific missions.

CMOS camera

To fullfill the photography mission of the ION satellite, a small black and

white CMOS camera is used. The camera is directly powered by the SID over

one of the SID's power output lines. Whenever powered, the camera streams

gray scale images at a resolution 640 x 480 pixels at 24 frames per second

8

Figure 2.1. The Hardware Components of the ION Satellite

Nearly all devices onboard ION interface directly to a single flight computer. These devices are very simple and
must be directly operated by the ION software leading to a complication referred to as the “Dumb Device”

problem.

Power
Processing

Unit

Thruster 2

Thruster 3

Thruster 1

Thruster 4

Photo
Multiplier

Tube

CMOS
Camera

Payload
Components

Power

Power Sensors

Batteries

Solar Cells

Peak Power Tracking
External

Watchdog
Timer

Temperature
Sensor #2

Temperature
Sensor #3

Magnetometer
Torque
Coil #1

Torque
Coil #2

Torque
Coil #3

Attitude Determination and Control Components

TNC
(modem)

Antenna

Radio

Communications
Components

Supporting
Components

Shut­off
Diodes

Conductive
Deposition

Monitor

SID Flight
Computer

directly to the SID through an interface of eight data lines. An additional I2C

interface to the camera allows the setting of registers to control camera operation.

The SID is responsible for controlling power to the CMOS camera,

setting camera register values, and collecting digital image data streamed from

the device.

Thrusters

Four microvacuum arc thrusters are onboard ION. These thrusters are

wired to a device known as the Power Processing Unit (PPU), which is

responsible for generating the necessary voltages for proper thruster firing. The

PPU is wired directly to five digital output lines on the SID, used to enable the

firing of the thrusters.

Feedback on the performance of thrusters is provided by a sensor known

as the Conductive Deposition Monitor (CDM). The electrical resistance of this

device changes as material vaporized by the thrusters accumulates on the sensor.

The CDM is wired to a power output and analog input line on the SID.

The SID is responsible for enabling the firing of each thruster, powering

of the CDM, and sampling the analog output of the CDM.

Photo multiplier tube

In order to map airglow phenomena in the atmosphere, a Hamamatsu

H7155 Photo Multiplier Tube (PMT) is included onboard ION. Whenever a

photon of light strikes the sensor of the PMT a 5-V pulse is produced on a digital

input line connected to the SID. Power to the PMT is controlled by a signal line

from the SID, but this signal is mitigated by a set of photo diodes which prevent

powering of the PMT when light intensity is too great. A second output line

from the SID allows the computer to override the photo diode power cutoff.

The SID is responsible for controlling the power to the PMT, counting

pulses on an input line, and, if necessary, issuing a signal to override the photo

diode cutoff.

9

Attitude determination and control components

To properly orient themselves in space, satellites often perform active attitude control. In

order to do this, sensors providing feedback on spacecraft orientation along with an actuator

mechanism to perform control are required. On many satellites, this functionality is provided by

an independent subsystem which includes its own processor. The ION spacecraft has no such

luxury; instead the individual sensors and actuators are “dumb" devices which must be controlled

directly by the SID computer. The components below provide the functionality needed for ION

to perform active attitude control.

Torque coils

In order to generate the necessary magnetic fields used to orient the

spacecraft, ION incorporates a magnetic torque coil on each of its three axes.

Each of these coils is driven by an h-bridge chip controlled by two digital output

lines from the SID. The strength of the magnetic field generated is determined

by the duty cycle of a square wave signal output by the SID onto one of the

control lines. The direction of the magnetic field is determined by a signal on the

second line.

The SID, therefore, enables three onboard magnetic torque coils by

generating the appropriate square wave and direction signals.

Magnetometer

To aid in determination of the satellite's attitude in space, a Honeywell

HMC20003 three-axis magnetometer is used to measure the Earth's magnetic

field. When powered, this device produces three analog signals corresponding to

a measured magnetic field strength directly to analog inputs on the SID. Power

to the magnetometer is controlled by a output control signal from the SID. A

set/reset circuit that is used to remove magnetic history and temperature effects is

packaged with the magnetometer and controlled by two output lines from the

SID.

The SID is responsible for controlling power to the magnetometer,

10

generating the appropriate set/reset signals, and sampling the analog output of the

magnetometer.

Solar panels

Determination of the satellite's attitude is further aided through the use of

current readings of the onboard solar panels. By recording the electrical current

generated by a solar cell it is possible to use the cell as primitive sun sensor to

gage the position of the sun relative to the spacecraft. Five solar cells are directly

wired to analog input lines on the SID to record current generation.

The SID is responsible for sampling the analog output of the five solar

panels.

Communications components

Communication between the Earth and a satellite is commonly accomplished through the

use of a radio along with some form of modulation of digital data. In some cases these functions

are performed by an independent subsystem with its own processor. ION uses the SID flight

computer along with a modem and a radio to perform communications functions.

Terminal node controller

To modulate outgoing digital information and demodulate a received

analog signal, a PicoPacket Terminal Node Controller (TNC) is included onboard

ION. In addition to acting as a 1200 baud modem, this device also implements

the AX.25 communications protocol which specifies a data format for digital

information [12]. This device is directly connected to a serial port on the SID

and to the onboard radio. Power to the TNC is controlled by a control signal

output from the SID.

The SID is responsible for serial communications with the TNC and

controlling the power of the TNC.

Radio

ION communicates with a ground station through the use of a TEKK

11

KS960 two watt radio. To send data to Earth, the radio receives an encoded

audio signal from the TNC and transmits it as a radio signal. Data from Earth is

obtained by receipt of a radio signal which is output as an audio signal to the

TNC for decoding. Power to the radio is controlled by a control signal output

from the SID.

The SID is responsible for controlling power to the radio.

Antenna

A dipole antenna is included onboard ION for use by the radio. Upon

launch of the satellite the antenna is in a stowed configuration and must be

deployed once ION is in orbit. Deployment of the antenna is controlled by a

control signal output from the SID.

The SID is responsible for assertion of a signal to deploy the antenna.

Supporting components

Three additional hardware components which perform basic functions for satellite

operation are included on ION.

Temperature sensors

In order to record the temperature onboard ION, three Dallas

Semiconductor DS1820 temperature sensors are included. These devices are

wired directly to a serial port on the SID and can be queried for a temperature

reading using the Dallas Semiconductor 1-Wire communications protocol [13].

 The SID is responsible for querying the onboard temperature sensors over

a 1-wire bus.

Watchdog timer

In addition to the watchdog timer incorporated on the SID computer, an

additional external watchdog timer is included on ION. This device acts as a

safety mechanism, disconnecting power to the entire satellite for a period of two

minutes if it does not regularly receive a signal from the SID specifying that

12

everything is running well. The watchdog timer is connected directly to one of

the digital output lines of the SID.

The SID is responsible for regularly “kicking the dog” in order to prevent

system reset.

Power system

Power onboard ION is provided by a power system consisting of two

lithium-ion batteries, 20 solar panels, a custom built power control board, and a

custom built peak power tracking (PPT) board. Sixteen channels of analog

output from the power control board specifying system voltages and currents are

wired directly to analog inputs on the SID. Battery charging, battery use, and

solar power use are controlled by the power control board as a result of four input

signals from the SID.

The SID is responsible for sampling the analog output of the power

control board and control of four output signals specifying power policy.

2.2.2 Discussion

From the listing of devices and their interfaces it can be seen that nearly every electronics

component onboard ION must be operated directly by the SID computer. Operation details of

these devices require specific timings and control of signal lines. Under ideal conditions this

would have been performed by individual processors dedicated to performing the operations of a

subsystem. Unfortunately, very few of these devices are packaged as such intelligent hardware

“black boxes” and therefore a large amount of responsibility is placed upon the SID computer

and its software. We refer to this complication as the "Dumb Device" problem.

The SID flight computer is a very unique and proprietary piece of hardware for which

very little software has been developed. In fact, only about 12 such computers exist and support

is very limited. As a result of the minimal support available for the SID along with its unique

nature, it was quickly determined that standard software systems such as Linux could not be

easily adapted to the ION satellite. Instead, the majority of the software written for the ION

satellite would need to be written specifically for the SID computer.

13

2.3 Determined ION Operational Requirements

The previously detailed hardware onboard ION and the general scientific mission were

used to determine a comprehensive, though very general, list of ION satellite operational

requirements. The operations determined were the obvious result of the functions performed by

onboard hardware components and were found to naturally fall into three categories: input

sample functions, output actuator functions, and communications functions. Very few of these

operations were found to occur autonomously, allowing the entire ION satellite to be treated as a

passive collection of instruments controlled from the ground. This suggested that providing a

robust system of remote control would be another primary responsibility of any software system

onboard the ION satellite.

2.3.1 Introduction

Space satellites typically perform a standard set of tasks. First, satellites perform power

management operations, including control of solar panel operation, management of power

distribution, and control of battery charging. Many satellites also perform attitude control in

order to allow them to maintain specific orientations with respect to the Earth's surface. Attitude

control may be performed passively using magnets and gravity gradient stabilization, or may be

actively performed by a control mechanism such as gas thrusters, magnetic torque coils, or

momentum wheels.

Communications and data handling operations are performed by most satellites. These

operations include transmission of telemetry data to Earth, receipt of commands, management of

data, and execution of any necessary computations.

Finally, satellites perform what can be termed payload operations. These operations are

specific to the payload of a satellite and may include imaging tasks, communications relay tasks,

or tasks to perform scientific experiments.

Traditionally, each of these four main areas of functionality has been performed by an

independent hardware subsystem. In the ION satellite this was not the case, as explained in

Section 2.2.1. Onboard ION, the central flight computer and its software would be responsible

for performing any satellite operations that were determined to be necessary. To guide the

14

development of the ION software system it was therefore important to formally outline all of the

operations that the ION satellite would be expected to perform.

2.3.2 ION operational requirements

The operational requirements listed below are an expanded and organized list of those

deemed necessary in Section 2.2. The functionality has been organized in terms of items that

perform an input function, items that perform an output function, and items that perform a

communications function. The operational requirements are defined in a very high level manner;

little consideration is yet given as to how these functions are actually performed.

1) The following input actions are to be performed:

Take and record a power sample at undefined times and at an undefined frequency.

Take and record a picture at undefined times and at an undefined frequency.

Take and record a temperature reading at undefined times and at an undefined frequency.

Take and record a magnetometer reading at undefined times and at an undefined frequency.

Take and record a photo multiplier tube count at undefined times and at an undefined frequency.

Take and record a conductive deposition monitor sample at undefined times and at an undefined frequency.

Take and make use of a real time clock sample at undefined times and at an undefined frequency.

2) The following output actions are to be performed:

Fire magnetic torque coils at undefined times and at an undefined frequency.

Fire microvacuum arc thrusters at undefined times and at an undefined frequency.

Control power of the communications system at undefined times and at an undefined frequency.

Issue a beacon over the communications system at undefined times and at an undefined frequency.

Release the communications antenna at an undefined time.

Kick the external watchdog timer at undefined times and at an undefined frequency.

Output appropriate signals for power management as a function of system state.

3) Communications with a ground station on Earth is to be performed:

Return data resulting from satellite operations to the ground station.

Accept commands specifying operations to perform from the ground station.

These operational requirements are graphically illustrated in Figure 2.2.

15

2.3.3 Discussion

The specification of formal satellite mission requirements should be completed as a group

effort with much oversight very early in the project development cycle. Unfortunately, the

operational requirements of the ION satellite were not developed as a result of such an effort.

Instead, these requirements were only formally determined and detailed by the software

development team to provide direction in determination of what problems the ION software

system would be required to solve. As a result, the determination of what functions the ION

satellite would perform was left to the whim and limited knowledge of a small group of software

developers.

The ION operational requirements detailed in the previous section were driven by the

hardware onboard the satellite. This influence can be seen very clearly in the listing of input and

output functions. Nearly all of the operations expected to be performed by the satellite are

simply the obvious result of the functions performed by onboard hardware. The requirements

which were detailed were extremely general and written in a manner which allowed for

determination of mission specifics in the future. For example, nearly all operations performed by

the ION satellite are required to be performed at any time with any frequency.

The determined satellite operational requirements begin to suggest a number of software

requirements and software design decisions. First, because of the Dumb Device problem, it is

16

Figure 2.2. Operations performed by the ION Satellite

All ION Satellite operations can be classified as input, output, or communications functions.

Flight Computer Data Result Communications
Command Communications

Power Samples

Image Samples

Temperature Samples

Magnetometer Samples

Photo Multiplier Tube Samples

Conductive Deposition Monitor Samples

Real Time Clock Samples

Magnetic Torque Coil Control

Thruster Control

Communications Power Control

Beacon Control

Antenna Release Control

Power Control
Watchdog Timer Control

clear that the central flight computer will be responsible for performing all of the above

functions. None of the above actions will be automatically performed by a hardware black box,

suggesting that the software system on the SID will be relatively complex. The software system

will span both a number of functions and a number of levels of functionality, from low level

control of a device to high level recording and management of resulting data. Any software

model to be developed should segment both the different functionality needed as well as

differing functionality levels.

Second, nearly all of the functions performed by ION can be classified as either the

control of an actuator device or the reading of a sensor. Even the real time clocks on the SID can

be treated as time sensors. This provides for a relatively simple view of the majority of the

hardware onboard ION despite its wide range of functionality and manner of operation.

Additionally, this suggests that there should be a way to develop a small number of reusable

software interfaces to perform all of the hardware input and output functions of the satellite.

Third, all of the functions the ION satellite must perform, with the exception of

communications functions and power management, can simply be considered regular, though

arbitrarily scheduled, operations of a hardware device. The only autonomous activity that must

occur onboard ION is radio communication with the ground and control of the power board.

Standard satellite functionality such as active attitude control is not autonomously performed

onboard ION. Therefore, nearly the entire satellite may be treated as a passive device which is

somehow controlled from the ground.

The view of ION as a passive device is a significant departure from the usual manner of

satellite operation in which a satellite may perform the majority of functionality autonomously

with little control from the ground. This suggests that one of the major functions of any software

system onboard ION will be to provide a robust system of remote control. This reinforces the

requirement that the communications mechanism operating onboard ION must accept commands

specifying satellite operations in addition to data return.

2.4 Determined Software Functional Requirements

With knowledge of the hardware onboard ION and a formal specification of required

satellite operations, a three-tiered system of software functional requirements was developed.

Every operation the ION satellite performs was found to require two pieces of software: a

17

mechanism to schedule execution of the operation and a mechanism to implement the operation.

The software functional requirements developed led to a software model in which satellite

subsystems, traditionally implemented in hardware, would be simulated as software subsystems.

Each subsystem was determined to be responsible for management of its own data as well as its

own schedule of operations, furthering the view of the ION satellite as a passive collection of

schedualable instruments.

2.4.1 Tier 1 - Direct requirements

The first tier of software requirements are externally imposed on the software system.

These requirements directly result from the previously determined satellite operational

requirements along with the limitations and requirements of the hardware onboard the ION

satellite.

As determined in Section 2.3.3, the majority of ION satellite functions may be classified

as regularly, though arbitrarily, scheduled input or output actions. As a result of the Dumb

Device problem, the software system must solve two problems for each operation the satellite

performs. First, a mechanism is needed to regularly perform the required operation based upon a

schedule or command received from the ground. Second, a mechanism to handle the exact

details of performing the operation is needed.

For example, the ION satellite functional requirement to “Take and record a picture at

undefined times and at an undefined frequency” can be considered to consist of two main

problems. The first problem requires the creation of a mechanism to interpret a request from the

ground to take a picture, begin the process of taking a picture, and appropriately store the

resulting image. The second problem requires the creation of a mechanism for the hardware

details of making the camera take a picture. This includes: powering on the camera, configuring

camera settings, starting a memory transfer operation, and powering off the camera.

The direct software system functional requirements are therefore:

(1) Provide a mechanism to handle the low level details of operating every

hardware device onboard the ION satellite.

As a direct result of the Dumb Device problem a mechanism is needed to

18

control each of the hardware devices on ION. Ideally the mechanism should

completely hide the operational details and provide a simple way to use the

device. Furthermore, since all devices can be simply considered sensors or

actuators, it should be possible to use a similar design across all devices.

(2) Provide a mechanism to use each device or group of devices

appropriately based upon an arbitrary schedule or, in limited cases, system

state.

The requirement to use each device at arbitrary times necessitates a

mechanism to schedule device use. Ideally the mechanism should continue to

hide the details of device operation of each device or group of devices and should

record any data that is created as a result of device operation. The notion of

performing regularly scheduled work and recording resulting data is relatively

generic; thus, it should be possible to use a similar design across all devices

regardless of the specific operational details.

(3) Provide a mechanism for returning recorded data to earth and for

accepting sequences of commands.

The passive nature of the satellite and the requirement to use devices at

arbitrary schedules makes it clear that a large amount of interaction with the

satellite from the ground must occur. The relatively undefined nature and

frequency of device use along with the variety of data collected requires that this

mechanism provide for the bidirectional transfer of generic data of any format.

Decisions made

It has been previously noted that traditionally many satellites have separated their

functionality into multiple physically independent hardware subsystems. Each hardware system

would be responsible for performing a single function such as attitude determination and control

or operation of a payload device such as camera. The hardware design of ION does not allow for

this. Instead, a single central computer is required to perform all satellite operations. The

separation of physical systems is therefore simulated through a software design that provides

19

segmentation of associated functionality.

It was realized that each group of associated satellite functionality could be performed by

a software subsystem. Each subsystem would consist of two parts, corresponding to the two

problems which needed to be solved for each satellite operation. The first part would be a

generic mechanism, known as an application, which would use a hardware device or group of

devices based upon either a schedule or system state. The second part, known as a device driver,

would be a mechanism to solve the Dumb Device problem. Each subsystem would be

responsible for handling its own data and managing its own schedule of operations to perform,

thereby completely hiding the details of the operation of the subsystem. Figure 3.1 on page 27

illustrates an ION subsystem simulating what is typically a hardware subsystem.

2.4.2 Tier 2 - Secondary requirements

As a result of the decision to build the ION satellite software system around multiple

software subsystems devoted to performing small sets of satellite operations, a second group of

software requirements immediately became apparent.

(1) Provide a mechanism for allocating processing time and other resources

to software subsystems.

Each independent software subsystem needs to be given processing time

to run on the central computer as well as any other resources it requires. A

mechanism was needed to allocate these resources to each subsystem. Ideally the

mechanism would hide the details of resource allocation and provide a simple

way to use the entire satellite from the ground. This mechanism should allow for

some limited interaction between subsystems, allowing individual subsystems to

affect other portions of satellite operations.

(2) Provide a mechanism to store data.

Because each independent subsystem was determined to be responsible

for management of its own data, it was clear that a data storage mechanism

would be necessary. Data used and generated by subsystems may be of large size

and undefined format; therefore, this mechanism must be generic. Furthermore,

20

the mechanism should be easy to use, should hide the details of its operation, and

should allow for data to persist across system reboots.

Decisions made

The best manner in which to fulfill both the requirement of segmentation between

software simulations of satellite subsystems and the requirement to easily allocate processing

resources to such simulations, was determined to involve the use of independently executing

tasks. Each task would be responsible for execution of the software performing the functions of

a satellite subsystem. Processing time would be provided to subsystems through the use of

context switching.

In order to permanently store and access general data onboard ION it was decided to

implement a file system to use with the flash memory chip onboard the SID computer. The file

system would need to provide the ability to create, read, write, and delete files.

2.4.3 Tier 3 - Supporting requirements

In addition to the above outlined software requirements it was clear that the ION software

would need to implement a large number of small details that support the implementation of the

above requirements. Few of these requirements were identified initially and most were simply

developed as the need for then arose. These requirements can be grouped into two main areas.

(1) Provide support for the previous requirements in a reusable manner.

Very few details of implementation are listed in the first two tiers of

requirements and it is clear that a large amount of supporting software would

need to exist that performed small specific tasks. This software should be written

in a manner that would allow for its reuse whenever necessary. Examples of

such software include compression of images, implementation of standard data

structures such as queues, and support for performing data integrity checks.

(2) Provide support for reliability, safety, and software recovery

In addition to directly implementing the satellite mission, the software

system needed to provide some level of reliability, redundancy, and features for

21

recovery in the case of any errors. Few of these requirements were identified

initially and most were developed as time allowed. Examples include support for

new software updates from the ground, recovery mechanisms in the case of

device failure, assessment of general system health, and logging of system

activity.

Decisions made

The majority of the functionality required from this tier was not initially known, and as a

result, few design decisions were made. Instead, most of this functionality was designed and

written when necessary.

As none of these requirements directly contribute to any of the identifiable satellite

mission requirements, it is tempting to consider them of lesser importance. In reality, a large

portion of critical software infrastructure falls within the third tier of requirements. Despite this,

because of the unknown nature of these requirements, very little of this functionality was

considered early on in the design process.

2.5 Resulting ION Satellite Interface

Given a space satellite which could be considered a passive collection of instruments to

be used at arbitrary times, an operations interface was developed in which a user on Earth would

upload schedules of work to perform and in exchange would download the results of any work

performed. All operations onboard ION are abstracted away by the ION satellite interface which

requires users on the ground to explicitly schedule every operation performed by the satellite,

effectively turning it into a very expensive radio controlled toy.

2.5.1 Introduction

Interaction with space satellites, especially small satellite such as ION, is limited as to

two main problems.

First, communications windows are very short and infrequent as a result of the typical

low earth orbits of small satellites. In general, communications between a satellite in low earth

orbit and a single ground station on Earth is limited to two 15 min windows every 24 h. The

majority of satellite operations must occur while there is no contact with the satellite. This

22

requires a satellite to either perform activity autonomously or based upon a predetermined

schedule.

Second, data bandwidth between small satellites and ground stations is often very limited.

Communications links are slow as a result of limitations of power, financial budget, and physical

space. A slow communications link, coupled with a short communications window, means that

very little data can be transfered between a satellite and a ground station. It is expected that

within a single communications session fewer than 100 kilobytes of data can be transfered

between ION and a ground station.

The limitations on contact time and data transfer amounts forces satellites to operate

largely autonomously and perform a large amount of processing and decision making onboard.

The ION satellite, on the other hand, uses a different model of operation stemming from the

passive nature of its operations.

2.5.2 ION satellite operations

Because ION is rarely in contact with the Earth, most operations must occur while there

is no possibility of commanding the satellite from the ground. Therefore, satellite operations

must be previously scheduled to occur when there is no contact between the satellite and Earth.

Command of the ION satellite begins at the ground

station where a user uses custom software on a Linux

computer to generate a schedule of work for each software

subsystem onboard the satellite. These schedules of work

consist of multiple pieces of data known as work units and

are stored in a standard format known as a config file. An

example config file is illustrated in Figure 2.3. Each work

unit specifies an operation to perform, the date and time it

should be performed, and any associated options with the

operation. In addition to storing a collection of work units,

each config file also specifies some global details of

operation for a subsystem.

Once a collection of config files has been created on

the ground, the next time communication is established with

23

Figure 2.3. An Example Config File

A config file, consisting of a schedule of
work to perform, provides the details of

subsystem operation.

Date and Time

Work Type

Work Options

Date and Time

Work Type

Work Options

Date and Time

Work Type

Work Options

Date and Time

Work Type

Work Options

Date and Time

Work Type

Work Options

Date and Time

Work Type

Work Options

Application Options

ION these files are transmitted to the satellite using a custom communications protocol

implemented as another piece of Linux software.

After the config files have been uploaded to the satellite,

each running subsystem onboard the satellite is commanded to

read and interpret its uploaded config file using a special

command built into the communications protocol known as

Rehash().

The satellite communications window soon ends and over

the course of the next 24 h each subsystem does its best to

perform the work requested. In most cases all work scheduled

will be executed. For reasons of system schedulability or

safety, however, some work may be dropped, though it is the

responsibility of the user creating work schedules to make sure

that the expectations placed upon the time and power margins of

the satellite are realistic and that no damage will occur as a

result of execution of the scheduled operations.

During the next communications window any data files that

were created as a result of satellite operations are downloaded.

These files may include samples from various instruments,

system logs, or even photographs. Interpretation and processing

of the resulting data are performed on the ground and any

operations that are to be taken as a result of returned data are

encoded as work units for upload. The complete process of

ION operations is illustrated in Figure 2.4.

2.5.3 Discussion

The described interface to the ION satellite is only possible

because the satellite may be treated as a passive collection of

occasionally used input and output devices. As very little is

happening autonomously onboard, the satellite can be

considered the equivalent of a very expensive radio controlled

24

Figure 2.4. ION Operations

A config file containing a schedule
of work is first uploaded. Following
a Rehash the satellite performs the

work scheduled. Results of
operations are later downloaded.

Reh
ash

Beep.

toy. The operation of all instruments is performed through a communications channel which

multiplexes the command of operations through a system of file uploads and downloads.

The end result is that operation of every instrument onboard ION is completely abstracted

away to the user on the ground. A user specifies a time and manner in which to use an

instrument and the operation is silently performed. Any resulting feedback from the operation

may then be obtained a number of hours later. This model of operation allows for ground based

active attitude control or other closed loop control of ION to occur on a very large timescale.

2.6 Summary of the Design Process

In this chapter the design process behind the ION satellite software system was detailed.

The hardware onboard the ION satellite and general mission specifications were used by the

software development team to develop a formal set of satellite operational requirements. Very

little functionality was needed to occur onboard ION autonomously and most functionality could

be considered a scheduled input or output operation.

The satellite operational requirements along with limitations of the onboard hardware

suggested a set of software functional requirements which were organized in terms of three tiers.

These requirements were used to determine some general guidelines for the design of the

software system. The decision to treat the entire satellite as a passive collection of instruments,

each operated by a piece of software simulating a hardware subsystem, was outlined. Finally, the

method of operating ION by transmitting schedules of work and receiving resulting data was

described.

The method of implementation of all of this has not yet been described and follows in

Chapter 3.

25

3. ION SOFTWARE SYSTEM DESIGN

At this point, the reader should be familiar with the hardware onboard the ION satellite,

the operations performed by the satellite, the problems the ION software system solves, and how

the satellite is operated from the ground. In this chapter the implementation details of the

satellite software will be covered.

First, an overview of the components of the ION software system will be provided. The

design and implementation of these components will then be covered, along with discussion of

design benefits and limitations. The components will be covered in the order of development

which will aid in the understanding of the relation between components. The chapter will end

with a discussion of the system design along with suggestions for future improvements.

3.1 Overview of the System Design

The ION satellite software consists of four main components each responsible for

fulfilling one or more of the software functional requirements. These components are outlined

here in order of tier of functionality.

TIER 1. Device drivers and applications

Two software components known as applications and device drivers completely fulfill the

first tier of the software functional requirements outlined in the Chapter 2.

As a result of the Dumb Device problem, any software system written for the ION

satellite was first required to provide a mechanism to handle the low level details of operating

every hardware device onboard the satellite. This was accomplished with a set of software

components referred to as device drivers. Typically, each device driver is responsible for

directly interacting with a single hardware device and completely abstracts away the details of

device operation. Nearly all of the hardware devices onboard ION can be considered sensors or

actuators so all device drivers follow a very similar design providing a simple way to perform an

output action or perform an input sample.

The ION software system was next required to provide a mechanism to use each device

or group of devices at the appropriate time based upon input from the ground. This was

accomplished with a set of software components referred to as applications. Typically, an

application interacts with one or two device drivers in order to operate hardware devices as

26

needed. Applications perform all management of data associated with device operation,

including interpreting and maintaining schedules of work from the ground and recording results

of operations into files on the file system.

An application, plus any associated device drivers used, completely abstracts away the

details of operation of a satellite subsystem. Figure 3.1

illustrates an ION subsystem simulating what is

traditionally a hardware subsystem. A total of nine

such subsystems run on the SID computer. Each is

implemented by one of nine applications and uses one

or more of sixteen total device drivers.

One example subsystem is the communications

subsystem which consists of a communications

application along with a device driver for the Terminal

Node Controller, Radio, and Antenna. This

subsystem, consisting of an application component and

multiple device driver components, fulfills the final of

the first tier requirements. This requirement

necessitated a mechanism to return recorded data to

Earth and to accept schedules of commands from

Earth.

TIER 2. System software

The system software component of the ION satellite software attempts to solve a portion

of the second tier requirements. This software provides a mechanism for providing processing

time and other necessary resources to applications running on the SID. The system software is

responsible for bringing the software system up to a known state upon satellite power up, starting

and stopping applications as necessary, providing a limited communications mechanism for

applications to affect the operations of the entire satellite, and cleanly shutting down the system

upon satellite power down. The system software and any associated subsystems running on the

satellite completely abstract away the details of operations of the ION satellite.

27

Figure 3.1. Satellite Subsystem

An ION satellite subsystem is composed of
software and hardware components. This design

simulates the segmentation of traditional
physically independent hardware subsystems.

Hardware
Device 2

Hardware
Device 1

Hardware
Device 3

Hardware

Application

D
evice D

river 1

D
evice D

river 3

D
evice D

river 2

Software

TIER 3. Supporting software

The remainder of satellite software falls into the supporting software component. This

component fulfills the remaining software functional requirements.

Standard operating system functionality such as message passing and event logging is

provided by the supporting software component. A custom file system provides a mechanism to

store arbitrary data on the satellite. A collection of libraries performing functions such as ELF

binary interpretation, CRC, and JPEG compression help further provide the necessary support

required by the other software components.

As a whole, the entire ION satellite software system may be visualized as the hierarchical

circle illustrated in Figure 3.2. Each ring in the hierarchy solves a specific set of software

functional requirements. As the center of the ring is approached, a larger amount of satellite

28

Figure 3.2. The ION Satellite Software System

The ION software may be visualized as a hierarchy of rings, each solving a specific set of software functional
requirements. As the center of the ring is approached a greater amount of satellite functionality is abstracted away.

Libraries

System Software

Application Manager

Startup Sequence

Reset Mode

Supporting Software

Communications
Application

Camera
Application

Housekeeping
Application

Magnetometer
Application

Propulsion
ApplicationPower

Application

Temperature
Application

Torque Coil
Application

OS Services

Analog Converter
Driver

Flash Memory
Driver

CMOS Camera
Driver

TNC
Driver

Watchdog Timer
Driver

Real Time Clock
Driver

External UART
Driver

Internal UART
Driver

SH2 Processor
Driver

Power
Driver

Control Latch
Driver

Propulsion
Driver

Magnetometer
Driver

Temperature
Driver

Torque Coil
Driver

PMT
Driver

PMT
Application

Applications

Device Drivers

operations specifics are abstracted away. For example, the first ring abstracts away individual

hardware devices through the use of device drivers. The second ring abstracts away individual

subsystems through the use of applications. The third, innermost ring, abstracts away the entire

satellite by presenting the appearance of a single satellite instead of multiple software subsystems

executing simultaneously.

With the exception of a portion of the supporting software component, these four

components are packaged into an ELF format binary file of about 950 kilobytes which is stored

as an array of files on the file system of the SID. This binary is known as the system load and is

executed by the ION satellite. Figure 3.3 illustrates the packaging of the ION satellite software.

29

Figure 3.3. The Complete ION Software Package

The system load software is formatted as an ELF binary and stored on the file system of the SID.

GDB Stub
Monitor for Debugging

ION Bootloader
Flash Memory Driver

File System
ELF Interpreter

Reset Mode
TNC Driver

Power Driver
Watchdog Timer Driver

Processor Initialization
Routine

Drivers
CMOS Camera

TNC
Watchdog Timer
Real Time Clock
Magnetometer
External UART
Internal UART

Power
SH2 Processor

Analog Converter
Control Latch

Photo Multiplier Tube
Temperature
Torque Coil
Propulsion

Flash Memory

ION OS
Supporting Software

EventLog
Message Passing

File System
System Clock

TimeValue
System Software

Startup Sequence
Application Manager

Reset Mode

Applications
Camera

Communications
Housekeeping
Magnetometer

Power
Propulsion

PMT
Temperature
Torque Coil

Library
Supporting Software

EEPROM Code ELF System Load

3.2 Device Drivers

3.2.1 Overview of device drivers

In order to solve the Dumb Device problem, a

number of software black boxes that completely

abstracted away the details of operating the hardware

onboard the ION satellite were developed. This was

necessary in order to not have to deal with the details of

device operation when it came time to write software

components that were to use the devices based upon actual mission requirements. Most every

driver follows a standard design, easing the process of programming and management of

development. Additionally, the black box abstraction was very robust, allowing for simple

changes to software resulting from changes to hardware interfaces.

Device drivers can be considered to be the solution to part one of the first tier of the

software functional requirements. That is, they provide a mechanism to handle the low level

details of operating all hardware onboard the satellite. Figure 3.4 illustrates the components

under discussion.

3.2.2 Introduction

Control of hardware devices is often one of the primary responsibilities of a software

system. The details of control of hardware are very complicated, requiring very specific control

of input and output control lines at very specific timings. In order to aid in the development of

large systems, the details of such low level operations are hidden by software components known

as device drivers.

Such software often abstracts operations of a hardware device and provides a very simple

mechanism by which to use a piece of hardware. When it comes time to write higher level

software that is responsible for operation of multiple devices, software developers can simply use

device driver software to operate devices without having to worry about the details of how such

operations are actually accomplished. Higher level software, termed customer software, can

simply perform software function calls upon device driver software. Device drivers can

therefore be considered "enabler" code which actually makes hardware devices work.

30

Figure 3.4. Device Driver Components

Device drivers abstract away the details of
operating the hardware of the ION satellite.

The implementation of device driver software is often very specific to how a physical

device electrically interfaces to a computer. The implementation of a device driver is free to

change as different hardware or interfaces are used, but the software interface presented to

customer software should stay constant. This interface should strive to provide all of the features

of the device in a way that is easy to use. Few limitations and assumptions on device use should

be made, allowing for the device driver to be a reusable software component.

A fictional device driver is illustrated in Figure 3.5. This device driver is directly

responsible for control of a single piece of hardware and presents a simple software interface for

device use. All details of device operation are hidden from higher level software.

The ION software system contains 16 such device drivers, each responsible for the

operation of one of more hardware components. These device drivers along with the functions

they perform are listed in Table 3.1.

31

Figure 3.5. Abstraction of Hardware

An ION device driver abstracts away the details of hardware device
operations and provides a simple to use software interface.

Hardware
Device

E
lectrical interface

betw
een SID

 and
hardw

are device

D
evice D

river

Softw
are interface

provided to higher
level softw

are

PowerOn()

PowerOff()

Initialize()

PerformFunctionA()

PerformFunctionB()

PerformFunctionC()

Software Hardware

Table 3.1. Device Drivers of the ION Satellite

Driver Purpose Functions

CMOS Camera
Abstracts away the details of taking a

picture.

- Power camera on and off
- Take a single picture
- Read and write register settings such as integration time and contrast
- Implement DMA transfer for image data
- Perform image cropping and line adjustment

Control Latch
Controller

Abstracts away the details of setting
and reading the control latches

onboard the SID computer.

- Read and write an arbitrary bit on any of the eight control latches
- Clear a latch

Analog
Converter

Abstracts away the details of using
the analog->digital converter on the

SID.

- Perform an A->D conversion on any of the 32 analog input channels

Flash Memory
Abstracts away the details of writing

and reading from the nonvolatile
flash memory.

- Read, write, or erase any of the 1024 blocks on the 8 MB flash memory chip
- Automatically handle flash memory chip write/erase rules
- Automatically perform de-fragmentation on blocks
- Allow chaining of blocks in linked-list manner

Magnetometer Abstracts away the details of
measuring the Earth's magnetic field.

- Power magnetometer on and off
- Perform a three axis reading of magnetic field

Photo Multiplier
Tube

Abstract away the details of
measuring airglow intensity.

- Power PMT on and off
- Provide ability to override automatic power shutoff
- Start counting photons
- Stop counting photons and return count

Pulse
Propulsion Unit

Abstracts away the details of firing
microvacuum arc thrusters and

measuring performance.

- Fire any of four microvacuum arc thrusters
- Perform a reading of the conductive deposition monitor

Power
Abstract away the details of obtaining
information on the state of the power
system and of setting power policy.

- Perform a reading of the state of sixteen system voltages and currents
- Set the state of four output control signals controlling power system policy
- Provide a communications mechanism for permission to use high power devices

Real Time
Clock

Abstracts away the details of using
the real time clocks onboard the SID.

- Read and write the time on any of the three hardware clocks onboard the SID

Internal Serial
Bus

Abstracts away the details of using
the SID serial port that is connected

to other devices on the SID.

- Set serial port mode and speed
- Set serial port destination
- Read and write single characters
- Implement the I2c protocol

External Serial
Bus

Abstracts away the details of using
the SID serial port that is connected

to devices external to the SID.

- Set serial port mode and speed
- Set serial port destination
- Read and write multiple characters
- Automatically perform asynchronous storage of incoming serial data

Terminal Node
Controller

Abstracts away the details of
communicating with the ground.

- Power the TNC and radio on and off
- Configure TNC for use
- Send and receive a stream of arbitrary characters to the ground
- Transparently perform any necessary character conversions
- Automatically perform hardware flow control with the TNC
- Automatically perform transmission rate limiting
- Release the radio antenna
- Cache and transmit telemetry beacons

Temperature
Sensor

Abstracts away the details of
measuring onboard temperature.

- Perform a reading of any of the three onboard temperature sensors
- Automatically configure temperature sensors
- Implement Dallas Semiconductor 1-wire over UART protocol

Torque Coil
Abstracts away the details of

generating magnetic fields from
onboard torque coils.

- Enable the generation of a magnetic field between -2 and 2 gauss on any one of
the three onboard torque coils
- Generate the appropriate PWM signals to control magnetic field strength

External
Watchdog

Timer

Abstracts away the details of
“kicking” the watchdog timer
external to the SID computer.

- Kick the watchdog timer external to the SID computer

SH2 Processor
Abstracts away the details of

functions provided by the SH2 CPU
on the SID computer.

- Allow for writing and reading of any of the ~100 system registers on the processor
- Allow installation and removal of interrupt service routines

32

3.2.3 Device driver design

During the development process of all of the device drivers onboard ION, six design

decisions were followed. The design decisions along with factors influencing their acceptance

are outlined below.

(1) Every identifiable electronic hardware component has a unique device driver

responsible for the details of its operation.

Early in the design process it was identified that ION contained many "dumb" hardware

devices that on their own could not perform any functions. This is in contrast to traditional

satellites which often include either devices which can be considered intelligent or self-contained

hardware black boxes. Nearly all hardware devices on ION are directly wired to the flight

computer and, because of their unintelligent nature, rely on this computer to handle the details of

their operations in order to make them work.

Many of the devices onboard ION are extremely complicated and require very specific

timings and interaction. In order to hide the details of these requirements, every identifiable

hardware component was abstracted with a software black box. Nearly every device on ION is

controlled by a dedicated device driver. Even devices such as the processor on the SID have a

software abstraction. This made device use very easy as simple function calls such as

TakePicture() and GetTemperature() could be used by higher level software. This

had the effect of simulating a hardware black box through the use of a software black box.

A large benefit as a result of this design decision was the ease with which software

development work was delegated. As the ION satellite did not have hardware black boxes that

could be given to students to develop, it was often difficult to delegate work. The use of empty

software black boxes to be given to students made it possible to more effectively delegate work.

One of the largest benefits as a result of the hardware abstraction was robustness gained in

the face of changing hardware interface definitions. Whenever a change in hardware occurred, it

was very simple to remap the device driver to use a different port or pin on the SID and rewrite

any applicable portions of a device driver without changing any of the higher level software.

There are some exceptions to this design decision which were made as a result of time

constraints and convenience. The software controlling the CDM sensor is incorporated in the

33

microvacuum arc thruster driver instead of as a separate device driver. This makes the device

driver into what could be considered a thruster subsystem driver. In similar spirit, the TNC

device driver performs functions that could have been segmented into a radio driver, antenna

driver, and a TNC driver.

(2) Every device driver follows a standard design.

Nearly every hardware device driver follows a standard design. All drivers are

implemented as a C++ class that derives from a base driver class. When necessary, assembly

code is embedded within the C code, though most drivers do not contain any assembly.

Each device driver has a set of standard calls which are inherited from the parent C++

class. These include a function to control power to the device and a function to initialize the

device. It should be noted, though, that the Initialize() function does not actually perform

any interaction with the hardware device itself and simply acts as a constructor initializing the

software driver. This allows for the ability to safely call the Initialize() functions upon

system startup without having to worry about strange system behavior as a result of misbehaving

physical hardware devices.

Each device driver includes a set of function calls specific to the operations that the device

performs. These are typically intuitive, based upon device characteristics. In most cases these

functions are very simple to use and completely synchronous. A single call to such a function

allows the device to perform a task and return any feedback. This cleanly abstracts away the

details of how the device actually performs its action.

A very large benefit to using a standard design across all device drivers is that previously

implemented device drivers could be used as models for students who were given an empty

device driver to fill in. Device driver software interfaces could very easily be mentally pictured

ahead of time and easily described to students. Furthermore, code reviews of driver software

were simple because the standard design had to be understood and trusted only once.

There are some exceptions to this model. The driver for the SH2 processor on the SID

consists mostly of system register definitions and support for managing interrupt service routines.

The external serial port device driver is uniquely asynchronous and uses an interrupt service

routine to buffer data coming into the serial port by inserting it into a queue.

34

(3) Device drivers may be layered.

As a result of the SID computer's design, in many instances there exists an intermediate

hardware device whose use is required in order to use another hardware device. This means that

in some cases higher level drivers need to make use of the functionality performed by simpler

device drivers. An example of this is the Power device driver, which must make use of the

analog sample functionality of the SID in order to read voltages and currents.

Therefore device drivers are layered and allowed to make calls into lower level device

drivers in order to not duplicate code and to maintain the authority of a single piece of code over

a hardware device. This is accomplished by passing references of required device drivers to the

Initialize() call of higher level device drivers. It is interesting to note that this creates a

dependence on the order in which device drivers are initialized.

(4) Device drivers are self contained pieces of software.

During development of device driver software it was not known what additional software

would be running on the SID computer and what sorts of services would be provided by any

operating system which also happened to be running on the processor. For this reason it was

decided to make device drivers entirely self-contained pieces of software and make no

assumptions or requirements on any operating system services or system calls which might be

provided.

Therefore, if a device driver requires a piece of information such as the system time, it

cannot perform a function call such as GetTime(). Information such as this must be provided

to the device driver by the customer piece of software.

This not only resulted in self-contained device drivers, but also had the benefit of

allowing device drivers to be compiled and tested as independent software loads to run on the

SID during the development process.

(5) Device drivers are intelligent.

Driver software should strive to make use of hardware devices as simple as possible by

the calling customer. Drivers should perform any complex functionality transparently and

provide any further functionality that would aide in making customer code simpler.

ION device drivers incorporate a few features in order to accomplish this goal. Device

35

drivers sometimes maintain internal state and may be queried for what the state of a hardware

device is. Device drivers may automatically perform functionality that would needlessly

complicate the process of using a hardware device. For example, the CMOS camera device

driver includes functionality to crop images and perform minimal processing on images obtained

from the camera. The TNC device driver includes functionality to transparently perform soft and

hard flow control, functionality to transparently perform conversion of special characters which

are not correctly transmitted by the TNC hardware, and functionality to perform automatic rate

throttling of transmissions. Many device drivers automatically perform hardware device

initialization the first time the device is used.

As device drivers become more intelligent they also become more complex pieces of

software. By trying to be as user friendly as possible and performing a large amount of

functionality automatically, programming errors may be introduced into the device driver. Since

device drivers are fundamental components of the ION satellite system, they need to be entirely

trusted and completely understood because they must always perform as expected. Efforts were

therefore made to keep device drivers as simple as possible while allowing them to be intelligent

and user friendly.

One such example is found in the real time clock device driver. Three real time clocks

exist on the SID computer and ideally it would be possible to use a single function call in the real

time clock driver to read all three and return an average time. Yet, writing the driver in this

manner would destroy the redundancy provided by the real time clocks and create the risk that

none of the real time clocks could be used if a single one was malfunctioning and providing

incorrect data. Instead, the real time clock device driver requires customers to explicitly specify

which real time clocks are to be read and averaged.

The primary benefit obtained from the development of intelligent device drivers is that

when it came time to write higher level software, most of the required functionality was already

implemented. As a result, the remaining application software to be written was very simple.

(6) Every device driver is used by a single customer.

The original software design called for every device driver to be used by a single

customer piece of software. This was meant to prevent multiple customers from attempting to

perform hardware device operations simultaneously, which could result in interference.

36

Unfortunately, this decision was not sustainable and it was realized during the

development process that in many cases multiple applications required the use of a common

device driver. For example, as a result of limitations in interapplication communications to be

outlined later, nearly every application running on the SID uses the power device driver in order

to request permission to use devices which require high power consumption. Many applications

also make use of the TNC device driver to update telemetry values that are included in the

regularly issued radio beacon.

Although this design decision was in general unsustainable, efforts were consistently

made to strongly limit the number of customers which made regular use of a device driver.

3.2.4 Discussion

The development of device drivers to enable the use of hardware devices onboard ION

was one of the biggest and most challenging tasks of the ION software development process.

Unfortunately, much of the work performed on device drivers is very specific to the hardware of

ION and the manner in which it interfaces to the SID computer. Therefore, the majority of this

effort cannot be reused by future projects.

As a result, an effort has been made to clearly describe the design decisions of the device

driver component instead of its details of operation. While the decisions described above are in

no way revolutionary and are in many cases intuitive and obvious, there may be value to future

developers in an explicit listing of design decisions made.

3.2.5 Summary

In order to solve the Dumb Device problem, and fulfill the first of the tier 1 software

requirements, a number of software components known as device drivers were developed. These

software black boxes completely abstract away the details of operating the hardware onboard the

ION satellite and provide many benefits such as a robustness to changing hardware interfaces

and simpler delegation of work to students.

While device drivers offer the functionality necessary to use a hardware device, they

themselves do not perform any activity without explicit command from pieces of software which

make use of device drivers. Such customer software, known as application software, will be

outlined in Section 3.4.

37

3.3 System Software

3.3.1 Overview of system software

The tier 2 functional requirements are now

addressed. A collection of software which could be

considered an operating system was developed. This

software is intended to support any running subsystems

on the SID computer and provides for an environment in

which applications could be written.

The system software component consists of a

startup sequence which reliably brings the software system up to a known state, a central

intelligence which, based upon an uploaded specification, appropriately manages the allocation

of resources such as processing time to different applications, and a piece of software which

safely shuts the software system down and provides for a back door into the system in the event

of catastrophic failure. These three pieces provide the core of the ION satellite software system.

Figure 3.6 illustrates the components under discussion.

3.3.2 Introduction

To efficiently allocate the hardware resources of a computer, most software systems

incorporate a collection of software known as an operating system. While modern operating

systems incorporate a large amount of additional functionality, the main purpose of an operating

system is to allocate processing time and memory to independently executing pieces of software

often referred to as tasks or processes.

Most computer systems contain only a single processor allowing only one task to be

executed at a time. In order to simulate the appearance of multiple simultaneously executing

tasks, operating systems typically allocate very short discrete periods of processing time to each

task in a process known as multitasking. Multitasking is performed by a piece of an operating

system known as a scheduler and requires the ability to temporarily suspend and record the state

of an executing task and to later resume it. The process of transitioning from the execution of

one task to another is known as a context switch [14].

38

Figure 3.6. System Software Component

The system software manages system state
and allocates processing resources to

applications.

Multiple models of multitasking exist. One of the simplest and oldest models is known

as cooperative multitasking. In this model, a running task is regularly provided as much

processing time as it needs with the expectation that the task will limit itself and freely return

control of the processor when a discrete unit of work has been performed. This model of

multitasking was originally used in Windows 3.1 and early Macintosh operating systems [15].

3.3.3 System software organization

Similar to a traditional operating system, the functionality of the system software is to

provide a mechanism for allocating processing time and other necessary resources to applications

running on the SID. Additionally, this software is also responsible for bringing the software

system up to a known state upon satellite power up, starting and stopping applications as

necessary, providing a limited communications mechanism for applications to affect the

operations of the entire satellite, and for cleanly shutting down the software system upon satellite

power down. The system software plus any associated subsystems running on the satellite can

be considered to completely abstract away the details of operations of the ION satellite.

Three pieces of software make up the system software component. The Startup Sequence

is the entrance point to the entire ION software load. This software configures the basics of the

software system, bringing it up to a known and trusted state. Control is handed to the

Application Manager, the central piece of software on the ION satellite. This software

appropriately provides processing time to applications running on the SID and acts as a robust

version of what is typically the scheduler in an operating system. Upon system shutdown or

critical error a piece of software known as Reset Mode is executed. This software provides a

back door mechanism to access and use the the ION satellite and its hardware components

directly during the reboot process. This control flow is illustrated in Figure 3.7.

3.3.4 The Startup Sequence

The entrance point to the ION satellite software system is known as the Startup Sequence.

The responsibility of the Startup Sequence is to get the software system up and running into a

known and usable state and then hand system control over to the Application Manager.

The Startup Sequence begins by creating an instance of every device driver available and

creating a central device list. The Startup Sequence then initializes every device driver on the

39

system one at a time. As the initialization process does not physically use any hardware device,

there is no risk of system lockup due to misbehavior of a physical device. Next, the Startup

Sequence initializes the entropy pool onboard ION by performing an XOR operation over the

entire 1 MB memory space of the SID. With a working source of entropy, the Startup Sequence

randomly selects one of the three real time clocks onboard the SID and obtains the system time.

At this point the Startup Sequence brings up the file system. This is done by first

confirming the consistency of the file system by making sure that a default set of uncorrupted

config files exists on the system. If there are any problems, the file system is completely erased

and a default set of config files is written out to the file system. This allows for a known system

state to be entered upon startup through both allowing for maintenance of system state across

reboots in the case of a well behaved system and the destruction of any accumulated state in the

case of any errors or strange conditions.

With the fundamentals of the ION software system configured, the Startup Sequence

40

Figure 3.7. The ION System Software Component

The system software is the core of the ION satellite software and includes traditional operating system
functionality such as configuration of system state and allocation of processing time to independently executing

tasks.

The Startup Sequence

Create and Initialize
all Device Drivers

Configure Basic
System State

Confirm and Bring
Up File System

The Application Manager

Reset Mode Loop
Perform Power Management

Issue Beacons
Perform Simple Communications

Configuration
Search

Rehash

Main Loop
Provide processing

time to all Applications

Cleanup

Record State

The Reset Mode

Reboot

finally enters the Application Manager. If at any point during the Startup Sequence any

unrecoverable errors occur, the Startup Sequence does not transfer system control to the

Application Manager and instead directly enters Reset Mode.

3.3.5 The Application Manager

The Application Manager is the central piece of software on the ION satellite, allocating

processing time to all of the applications running onboard ION, and providing a view of the

satellite as a single unit instead of multiple executing subsystems. This functionality requires the

ability to appropriately start and stop applications as specified in configuration files provided

from the ground and to perform system recovery in the case of misbehavior of any running

application. As such, the Application Manager may be considered a robust and intelligent

version of the scheduler that is often the core of standard computer operating systems.

Application Manager startup

Upon startup, the Application Manager searches the file system for a configuration file

that details which applications should be running on the system as well as the parameters that

each application should be given when it is started. Multiple configurations may be stored on the

file system and the correct one is chosen based upon a search that is adjusted as a result of the

manner in which the Application Manager was previously shut down.

If the Application Manager has previously shut down cleanly, then the last recently used

configuration file is selected. In the case of previous shutdown as a result of system error a

default safe configuration file is selected in which a minimal set of applications is specified to

run.

The selected configuration file is loaded and parsed in a process known as a rehash. All

information specified in this file is inserted into a database that the Application Manager

maintains where it may be easily queried when needed. The Application Manager then enters its

main loop.

Application Manager main loop

The majority of the Application Manager's execution time is spent in a loop in which

every running application is given processing time in a round robin manner.

41

Upon every iteration through the main loop, the Application Manager queries its database

for the state of each application. The state of each application includes information on whether

the application is currently in the queue to be allocated processing time and if the application

should be given processing time based upon the loaded configuration file. The state of each

application is then assessed individually and one of the following actions is taken:

• If the application is not being provided CPU time and should not be, then no

action is performed.

• If the application should be provided CPU time but is not, then it is allocated a

new task and mailbox. The application is then started up as a new task,

provided with a set of startup parameters, and given processing time.

• If the application is being provided CPU time but should not be, then it is sent

a message to shut down and given processing time to shut down cleanly. The

application is then marked as not running in the database.

• If the application is being provided CPU time and should continue to do so,

then a message is sent to the application to continue running and a context

switch is performed to allow the application to run.

Anytime a context switch occurs and an application is given processing time, it is given

complete control of the SID's processor and no other software executes. Eventually, the

application freely returns the CPU to the Application Manager and reports back its status as well

as any other messages for the Application Manager. This mechanism of CPU allocation, known

as cooperative multitasking, is illustrated in Figure 3.8.

Cooperative multitasking contains an inherent danger as an application that either

misbehaves or enters an infinite loop can completely stall the entire software system by not

returning the processor. The Application Manager therefore contains a recovery mechanism

which detects applications that do not freely return the processor within a specified amount of

time. If this occurs, a callback function is executed by a system interrupt service routine and the

Application Manager resumes execution. The misbehaving application is then forcibly shut

down. During the next iteration of the main loop, there will be an inconsistency in the

42

application's state and the application will be restarted. If an application is forcibly shut down

too many times, then it will be permanently disabled.

A communications mechanism between applications and the Application Manager has

been referred to. This mechanism, implemented as part of the later described supporting

software component, provides the Application Manager and each application with a mailbox

allowing for very simple messages to be passed between them. This allows for subsystems, as

implemented by applications, to provide feedback to the Application Manager and assert some

control over the operations of the entire satellite.

After returning the processor to the Application Manager, applications are required to use

this communications mechanism to return a status message. Applications may signal that

everything is going well, or they may request to shut themselves down and not receive future

processing time. Applications may also return other limited information to the Application

Manager such as system shutdown requests or requests to rehash the Application Manager using

a different configuration file.

43

Figure 3.8. The Main Loop of the Application Manager

The main loop of the Application Manager uses cooperative multitasking to allocate processing time to
independently executing applications.

Application Manager
Main Loop

For all running Applications
 Get next running Application
 Give Application CPU time

Execute
NOP Sled

Kick Soft
WDT

Check Errors
Check Shutdown

Application 1

Check Messages;
Handle Messages;
Check for Work;
Perform Work;
Return Processor;

Application 2

Check Messages;
Handle Messages;
Check for Work;
Perform Work;
Return Processor;

Application 3

Check Messages;
Handle Messages;
Check for Work;
Perform Work;
Return Processor;

1

2

3

4

5

6

Within the Application Manager's main loop, two additional small functions are

performed. Upon every iteration through the loop the Application Manager kicks an internal

software watchdog timer which is intended to restart the SH2 processor on the SID in the event

that the system freezes. Each time through the main loop the Application Manager executes a

series of 100 NOP instructions known as a NOP sled. This is a component of a rudimentary

recovery mechanism which allows assembly level CPU instructions to be written in place of the

NOP's from the ground. The watchdog timer and NOP sled are portions of safety mechanisms

which are the result of functionality provided by software described later in this chapter.

Application Manager shutdown

Upon detection of a serious unrecoverable error or receipt of a message requesting system

shutdown, the Application Manager performs shutdown and enters Reset Mode. During the

shutdown process, each application is shut down and given final processing time to perform any

necessary cleanup functions. Once all applications have been shut down, a file is written out to

the file system which specifies whether the system is shutting down as a result of a shutdown

request or as a result of serious error. This file is used on the next startup of the Application

Manager to determine the appropriate configuration file to use. The Application Manager then

passes system control to the Reset Mode.

3.3.6 The Reset Mode

The Reset Mode provides an alternative mode of satellite operation in which a back door

into the system exists immediately prior to a system reboot. Upon system shutdown, Reset

Mode is entered for a period of time ranging from one hour to one day depending upon the

method of entrance and the severity of any problems encountered previous to the shutdown

decision.

The SID computer executes a very simple loop in this mode of operation, which is

believed to mimic the basic operation of most other CubeSat software systems [5] - [7]. In this

loop, rudimentary power management is performed and every five minutes a radio beacon

containing telemetry such as system status, error conditions encountered, and reasons for

entrance into Reset Mode is issued.

44

The Reset Mode implements a very simple communications protocol which supports

reads and writes of arbitrary memory locations in the SID's RAM. Function calls to arbitrary

memory addresses may be performed over this protocol. This feature allows CPU assembly

instructions to be directly written to memory addresses and executed if need be. This allows for

system debugging from Earth and aids in performance of any necessary repairs should serious

problems arise.

The Reset Mode contains no reliance on any external software, such as services provided

by the tier 3 software requirements. Instead, the model of operation is one in which a few

absolutely critical and completely trusted device drivers are directly used. It can be considered

that the entire operational model of simulating subsystems using applications is experimental and

not entirely trusted; therefore, Reset Mode provides for the recovery mechanism in the event of

failure of this experiment.

3.3.7 Discussion

The use of a cooperative multitasking model to allocate processing time to applications

by the Application Manager provides a number of pros and cons. The biggest benefit to this

design is that the entire software system is both largely synchronous and easy to understand. No

race conditions exist that need to be checked for. The whole system software can be considered

to simply be polling each application to see if it requires some processing time. The entire

mechanism to perform context switches and automatically send appropriate status messages has

been very cleanly abstracted away as a set of two high level C functions that are used by both the

Application Manager and the applications.

Unfortunately, system responsiveness is seriously affected by the cooperative

multitasking mode of operation. The Application Manager's scheduling mechanism has no

concept of priorities for different tasks and, as a result, is in no way real time and makes no

guarantees of schedulability. Most pieces of work performed by applications have been found to

take between 200 and 800 ms. With nine executing applications it is possible for some

applications to run 5 s behind schedule. A mechanism to solve this problem and to help the

system maintain schedulability is incorporated within the applications themselves and will be

described in Section 3.4.5.

45

When applications are performing regular operations it is estimated that approximately

four context switches per second are occurring. When system load is low and little work has

been scheduled for the applications, context switches are estimated to occur at approximately 100

Hz.

The system software component of the ION software system provides the core

functionality needed for satellite operations. This component provides for an environment in

which applications specific to performing the tasks of subsystems can be written. The process of

providing computing resources to each of these software subsystems is completely hidden and

the system software prevents a view of a single satellite instead of multiple executing

subsystems. Therefore, the system software, along with any associated subsystems running on

the satellite, can be considered to completely abstract away the details of operations onboard the

ION satellite.

The majority of this software, with the exception of Reset Mode, does not directly deal in

any way with hardware devices or perform any sort of mission tasks. Instead, its primary

function is to provide a framework in which the remainder of the tier one requirements may be

implemented. While not all of the second tier of requirements have yet been fulfilled, the system

software has gone quite a ways forward doing so.

3.3.8 Summary

The system software component of the ION satellite software system was introduced.

This component, similar to a traditional computer operating system, provides an environment in

which applications which implement subsystems can be written. The three main pieces of the

system software bring the software system and software services up to a known state upon

startup, provide a safe mechanism to allocate processing resources to applications, and provide a

recovery mechanism in the event that the planned model of operation fails. In the next section,

applications which provide a software simulation of hardware subsystems, the primary reason for

the existence of the system software, will be discussed.

46

3.4 Applications

3.4.1 Overview of applications

In order to fulfill the second half of the tier 1

requirements, a standard software component known as

an application was developed. This component provides

a software simulation of a hardware subsystem and is

completely responsible for the regular use of and control

of one or more hardware devices. The passive nature of

ION satellite operations causes nearly all of the

functionality performed by applications to consist of regularly scheduled input and output

operations.

A standard set of work units was developed which allows a user on the ground to specify

operations to be performed by applications at arbitrary times. Each application maintains an

independent schedule of such work units which is created in memory from an uploaded file

known as a config file. Figure 3.9 illustrates the software components under discussion.

3.4.2 Introduction

The majority of work performed by traditional software systems is done by programs

referred to as applications. Applications, each implementing a specific set of functionality, often

execute as independent, self-contained tasks. Tasks are provided time to execute on the

processor of a computer system by an operating system.

A software system is said to be schedulable if a feasible schedule of allocating processing

time to tasks exists. In the event that programs are overburdened with work, the software system

is said to be unschedulable and will begin missing critical deadlines.

3.4.3 Application design

Having developed a collection of hardware device drivers, a mechanism was needed to

appropriately make use of onboard hardware devices as specified by the second tier 1

requirement. As a result of the ill defined ION satellite mission requirements, it was clear that

this mechanism would need to be very general, allowing for the performance of all possible

47

Figure 3.9. The Application Component

Applications simulate hardware subsystems
and abstract away the details of subsystem

operation.

satellite operations at arbitrarily scheduled times and rates. This mechanism is implemented by a

software component known as an application.

An application performs a small set of related functions based upon commands from the

Earth. The majority of these functions consist of simple input and output operations performed

by device driver software. Because the entire ION satellite could be treated as a passive

collection of input and output instruments it was determined that the execution of all application

operations could simply be scheduled from the ground as needed. Each running application

maintains its own schedule of work to perform. This schedule is created from a configuration

file, known as a config file, that is loaded and interpreted when the application is started. The

use of multiple independent applications each maintaining their own schedules of work to

perform is very decentralized, helping to provide the segmentation that typically exists in

hardware on satellites.

In fact, each application can be considered to be a software simulation of a traditional

hardware subsystem. Although applications have access to a device list specifying all of the

hardware device drivers on the system, applications are typically limited to the use of only the

device drivers applicable to the subsystem they simulate. To further maintain the segmentation

between the simulated subsystems, no mechanism exists which allows communications or data

sharing between applications. Nearly all data that an application requires for operation is

obtained from the config file on the file system; any data created as a result of work performed

by the application is directly written to a file on the file system.

The basic function of an application is to provide a general framework to schedule

operations, so it was possible to create a generic application from which all other applications

derive. This application provides the common functionality needed by all applications. Such

functionality includes loading and interpretation of config files, the implementation of a

scheduler to maintain schedules of work to perform, a mechanism to obtain and release

processing time, a message passing interface to allow limited communications with the

Application Manager, and an interface to obtain permission to use devices which draw large

amounts of power.

Applications also contain functionality that is specific to the operations performed by the

subsystem they implement. Such functionality can include using a device driver, writing data to

the file system in a specific format, performing data compression, performing decisions such as

48

power management, performing system housekeeping functions, or moving packets of data to

and from the ground.

All applications are implemented as statically allocated C++ classes which derives from a

base application class. Each class has its own stack space allocated within the class. Nine such

applications exist onboard ION. Their functions and options are shown in Table 3.2.

3.4.4 Work units, config files, and data files

Each application maintains an internal schedule of work to be performed. This work is

represented by a standard piece of data known as a work unit. Work units are generated on the

ground as needed and packaged into files known as config files. Config files additionally specify

some global parameters for the the behavior of an application. After being uploaded to the

satellite, these files are interpreted by the applications. The work units extracted from config

files are inserted into each application's internal schedule of work to be easily queried in the

future.

Two types of work units exist: single work units and recurring work units. A single work

unit specifies the type of work to perform, options related to the work, and the time the work is to

be performed. A recurring work unit specifies the work to perform, options related to the work, a

time to start performing work, a time at which to stop, and an interval time which specifies the

frequency at which the work is to be performed. Recurring work units allow for regularly

occurring operations to be easily scheduled using only one work unit. All times used on the ION

software system, included those specified in work units, specify UTC time in seconds since

January 2000 representation (J2000).

Each work type is defined to be either critical or noncritical. Noncritical work types may

be discarded by applications if they would be executed too late. In the event of unschedulability

when the entire software system is running behind schedule, this allows the system to get back

up to speed by allowing applications to drop noncritical work.

Applications which generate data record their data in well defined binary file formats.

Typically the formats used are tight binary structures. With the exception of JPEG images

output by the camera application, compression is not performed on data files. While

communications bandwidth is sacrificed, this allows for the simple reconstruction of data files in

the event of partial receipt on Earth.

49

Table 3.2. Applications of the ION Satellite

Application Rate Work Types Work Options

Camera

1/day

1/day

1/day

Take 640x480 picture

Store camera register settings

Clear camera register settings

Image Name

Register number and value

None

Communications

12/hr

12/hr

12/hr

1/lifetime

Power up communications system

Power down communications systems

Issue beacon

Release antenna

Prevent power down for 15 min

Ignore power down prevention

Beacon types

Burn time

Housekeeping

12/hr

3/hr

12/hr

N/A

N/A

1/week

12/hr

Write event log to disk

Sync file system to disk

Set system time based on hardware clocks

Print full file system listing to event log

Set system time

Request a system reboot

Kick external WDT

Log level to write

None

Clocks to use

None

Time

Reboot type

None

Magnetometer N/A Take a number of 3-axis magnetometer samples Power on delay, number of samples

Photo Multiplier Tube N/A Take a number of PMT samples Integration time, number samples, override

Propulsion

N/A

N/A

N/A

Fire a set of thrusters

Disable a set of thrusters

Take a CDM sample

Thrusters to fire

Thrusters to disable

None

Power

12/min

15/hr

N/A

Perform a power management decision

Take a power reading for management decision use

Manually set a power management state

None

Record sample to disk

Power management state

Temperature 15/hr Take a temperature sample Temperature sensors to use

Torque N/A Set the magnetic field being generated by a torque coil Coil duty cycles

3.4.5 Application behavior

This section will outline the structure of an application.

Application startup

An application is first started by the Application Manager. Upon startup, a collection of

parameters is passed into the entrance point of the application. These parameters specify a

config file to use, references to mailboxes for communications, and a list of all device drivers on

the system. First, the application loads and interprets the config file that was specified, in a

process known as a rehash. All work units specified in the config file are inserted into the

application's scheduler.

The application next performs any further initialization necessary such as opening

50

appropriate output files or initializing any required device drivers. The application then enters its

main loop and immediately returns the processor to the Application Manager.

Application main loop

The majority of a running application's time is spent in the main loop. The main loop can

be summarized as follows: receive processing time from the Application Manager, query the

scheduler for any work to do, perform work if it exists, and return the processor to the

Application Manager.

When an application is given processing time by the Application Manager, the

application first checks its incoming mailbox for any messages. In most cases, there will be a

message from the Application Manager which instructs the application to continue running as

normal. There may be a message requesting that the application shut itself down or perform

what is known as a rehash operation. In the case of a shutdown request, the application exits the

main loop and enters the shutdown portion of the application.

A rehash request simply commands the application to read in a new config file specifying

a new schedule of work to perform. A rehash request is always the result of a command received

from the ground that has been propagated through the Application Manager. Rehash is

accomplished by returning to the Startup section of the application and loading a new config file.

Generally there will be no shutdown or rehash messages in the application's mailbox and

the application will be free to continue with normal main loop operations. In this case, the

application queries its internal scheduler for any work that needs to be performed. Based upon

the current system time, the scheduler may return a piece of work to be performed. If a work unit

is returned, the application performs the work specified and then returns to the beginning of the

main loop where the CPU is returned to the Application Manager. If no work is returned or the

work unit returned is of a non-critical type and has long since expired as a result of the software

system running behind schedule, no work is performed and the application immediately returns

to the beginning of the main loop.

In the process of returning the CPU to the Application Manager, a message is sent to the

Application Manager specifying that everything is running normally and that the application is

freely returning the CPU. In the event of any problems or critical errors, applications may

instead choose to send a message which asks the Application Manager to shut the application

51

down. Some applications may return other limited

information or requests to the Application Manager,

allowing subsystems to provide feedback to the

Application Manager and influence aspects of

operations of the entire satellite.

Application shutdown

If a critical error is encountered or a

shutdown message is received from the Application

Manager during execution of the main loop, the

application exits the Main Loop and shuts itself

down. This is accomplished by closing any open

files, performing any necessary clean up operations,

and clearing the internal scheduler. The application

then permanently returns the CPU to the

Application Manager. A message specifying that

the application has shut itself down and does not

want anymore processing time is sent to the

Application Manager. A flow diagram of

application behavior is presented in Figure 3.10.

3.4.6 Discussion

The primary task of an application is to

provide a mechanism to perform a small set of

operations based upon an uploaded schedule. With

the exception of the details of performing an

operation, all applications are generally identical,

allowing for the use of a single common application format coupled with the use of software

inheritance. The implementation of all of the applications was greatly eased as the majority of

application functionality was automatically provided through inheritance. Applications were

further simplified because device drivers tend to be intelligent pieces of software which perform

52

Figure 3.10. Application Behavior

Applications, which execute as independent tasks,
simulate hardware subsystems by performing

operations scheduled from the ground.

Rehash

Release CPU

Obtain CPU

Check Messages

Query Scheduler

Perform Work

Record Results

Send Status Message

Clean Up

Entrance

Send Status Message

Release CPU
Exit

Application
Startup

Application
Main Loop

Application
Shutdown

Error Check

Application
Manager

all of the details of hardware device operation automatically. Development of specific

applications simply focused on the appropriate use of a device driver and the proper recording of

any data as a result of device driver use.

One of the largest benefits stemming from the use of generic scheduling mechanisms to

implement subsystems of the ION satellite is the ability to adapt to a changing mission

specification. As the mission requirements of the satellite were developed independently by the

software development team, concerns existed that incorrect assumptions on satellite operational

requirements may have been made. By implementing a general way to use the full functionality

of all onboard hardware, this concern was alleviated because the exact details of mission

requirements could be determined at a future time.

Applications force the use of the ION satellite as a passive device which performs only

scheduled events, making it possible to completely understand and characterize the behavior of

the satellite. No operation is performed onboard ION unless explicitly scheduled by a user on

Earth. Accurate simulations of satellite behavior may, therefore, be performed on Earth, before

sequences of operations are uploaded.

One of the general design philosophies of application behavior is that each application

would perform one complete work unit every time processing time was allocated by the

Application Manager. Although this provided for a very nice synchronous system, some

operations performed by applications require large amounts of time to execute, resulting in very

poor system responsiveness. Such operations must be must be broken up across multiple context

switches.

An example of this can be found in the PMT application. One work type the PMT

application can perform is to take forty 10-s PMT samples. The execution of this example work

unit requires at least 400 s with the great majority of this time spent busy-waiting. If the PMT

application performed this entire work unit before returning the processor to the Application

Manager, then the entire ION software system would be over 6 min behind schedule by the time

execution was finished. In order to prevent this, the CPU is regularly returned to the Application

Manager during the execution of this work unit, allowing for other applications to execute.

Although some asynchronism is introduced to the software system and the model of application

behavior presented is violated, no other solution which aids system responsiveness has been

found.

53

3.4.7 Summary

In order to allow the arbitrarily scheduled use of device drivers onboard the ION satellite

and fullfill the second tier 1 software requirement, a software component known as an

application was developed. This component provides a simple way to schedule any operation the

ION satellite performs. Furthermore, applications provide a segmentation of satellite

functionality by simulating what are traditionally hardware satellite subsystems.

3.5 Supporting Software

3.5.1 Overview of supporting software

The supporting software component of the ION

satellite software system includes a wide variety of

software which implements necessary, though rather

uninteresting, functionality. Typically, this software

fulfills the requirements of the third tier of software

functional requirements, providing software support for

the implementation of tier 1 and tier 2 solutions.

Figure 3.11 illustrates the components under discussion.

3.5.2 Introduction

One of the guiding philosophies behind software development is the use of abstraction

and segmentation. Segmentation of problems into individual pieces, each with a solution

provided by a piece of software abstracting away the details of implementation, allows software

developers to build large complex systems. Software which solves general problems is often

written in a reusable manner and packaged into software components known as libraries which

may easily be incorporated into multiple software projects.

Modern operating systems perform many services in addition to allocation of resources.

Operating system services may include a file system for data storage, a message passing interface

allowing independent tasks to share information, and error logging facilities.

Computer software to be executed is often stored on a file system in binary form. This

software must be copied into memory before it may be executed. A bootloader, commonly

54

Figure 3.11. Supporting Software Component

The supporting software implements necessary
functionality such as operating system services

and standard library functions.

permanently written into read only memory of an embedded system, is the piece of software

which loads an operating system into memory for execution.

3.5.3 Explanation and justification of supporting software

To support the previously detailed software components, much supporting software

needed to be written or obtained. This software implements very common functionality, which

is often necessary for the development higher level software. A large amount of this

functionality may be found as freely available COTS-like software libraries which can simply be

incorporated into a software project.

As a result of stubbornness of the ION software developers and of limitations due to the

proprietary nature of the SID flight computer platform, a large portion of this requisite software

was rewritten for the ION satellite. While this effort could be considered an inefficient allocation

of resources, some benefit was obtained from it. Nearly all of the software code that the ION

satellite executes has been written by the ION software developers. This allows for complete

knowledge and trust of nearly every single instruction the SID computer executes; practically no

untrusted or unnecessary code is ever executed onboard the ION satellite.

During the design process, with the exception of a file system, very little was known

about the details of what functionality the supporting software component would need to

provide. Therefore, very few initial design decisions were made and the supporting software

was designed and developed as it was needed.

Towards the end of the development process it was realized that the supporting software

that had been written could be organized into three main areas: software which provided modern

operating system services, software which implemented common functionality found in standard

libraries, and software, flashed into the EEPROM of the SID's processor, providing mainly boot

loading and debugging functionality.

3.5.4 ION OS Supporting Software

The ION OS Supporting Software provides functionality that is typically found in modern

day operating systems. This software is loosely considered to be what could be termed the ION

operating system.

55

EventLog

The EventLog provides a central mechanism for logging of all activity that occurs on the

ION satellite. Any piece of software may insert a text message into the EventLog. All entries

are automatically flagged with a time stamp and a priority level. EventLog messages can easily

be filtered based upon priority levels allowing for simple differentiation between critical errors

and debugging commentary.

The EventLog is stored entirely in statically allocated memory instead of on the file

system so that there exists no risk of generating additional log entries during insertion of an

entry. The housekeeping application occasionally traverses the EventLog and records interesting

entries to the file system where they may be downloaded.

Message passing interface

A message passing interface which provides mailboxes to applications and the

Application Manager was implemented. This system allows the queuing of messages and

provides for limited communications between applications and the Application Manager.

System clock

The ION software system includes a collection of functions to read and write the system

time as well as an interrupt service routine which is executed every 10 ms. This software is also

responsible for regularly kicking the hardware watchdog timer of the SH2 processor and

implements a soft watchdog timer which must be occasionally kicked by the Application

Manager. The system clock includes support for scheduling alarms and the installation of

callback functions to execute at specified times.

TimeValues

A system wide standard method of representation of dates and times known as

TimeValues was developed for the ION satellite. All times on the system are UTC and

represented using seconds since January 2000 with a resolution of 10 ms. The TimeValue

software also provides a large collection of arithmetic operations such as addition, subtraction,

and comparison that can be performed on dates and times.

56

File system

A custom file system was written to allow storage of general data on the flash memory

chip. The file system provides standard functions such as read, open, append, set position, get

position, delete, close, and directory list.

The file system is a flat file system containing no directories and is limited to 128 files

and filenames of 12 characters. The implementation makes use of a file allocation table (FAT)

which specifies the names, sizes, and locations of files on the flash memory chip. Blocks which

contain a contiguous file are chained together as a linked list in portions of the blocks reserved

for extended data.

Due to limitations on the speed and number of write operations available, the FAT is

typically kept in memory and is only synchronized to the file system upon close of a file or an

explicit sync operation. Caching of file system blocks during read operations is performed to

greatly improve speed. Only the append writing method is supported as it was found that the

application software would not need to write to arbitrary locations in files.

3.5.5 Library Supporting Software

The Library Supporting Software implements common functionality typically found in

standard libraries. This software is inspired by the standard library implementations and strives

to provide functionality in a generic, reusable, and efficient manner.

Example functionality includes implementations of queues, itoa(), snprintf(),

CRC, JPEG compression, an ELF binary interpreter, and endian conversion.

3.5.6 EEPROM Supporting Software

The EEPROM Supporting Software consists of a collection of software that is flashed

into the EEPROM of the SID's processor and not part of the system load. This software

functions mainly to load the satellite software from the file system and into memory where it can

be executed. This software is segmented into four sections: processor initialization code, a

debugging monitor, a bootloader, and Reset Mode.

Processor Initialization

This is the first software that is executed when the SH2 processor is powered. It consists

57

of a combination of assembly and low level C code. The primary purpose of this software is to

initialize system registers, enable the external RAM on the SID, and configure an initial stack.

GDB Stub

This is the monitor that allows for the debugging of software running on the SID. The

GDB Stub software can only be entered before launch, when the satellite software is being

debugged [16], [17].

ION Bootloader

If the monitor on the SID is not entered than the ION Bootloader software is executed.

This software loads the ION satellite software into memory for execution.

The ION satellite software is stored as an ELF format binary which is broken up into

multiple files on the file system. Upon startup of the satellite, the ION Bootloader software

searches the file system for a software load to execute. Once located and checked for corruption,

the software load is copied into memory and executed.

New ELF binaries may be uploaded to the satellite's file system, and if appropriately

named, will be located and used by the ION Bootloader.

Reset Mode

An implementation of Reset Mode, identical to the version that is in the system software,

along with requisite device drivers is flashed into the EEPROM of the SH2 processor. This

allows the ION satellite to continue to run in a limited manner in the event of complete failure of

the flash memory chip or corruption of the binary file containing the ION software load.

3.5.7 Discussion

A large portion of the supporting software components are often available as prewritten

software. The ION software developers chose to rewrite a large portion of this software in order

to be able to completely trust the software executing on the SID computer. This required a

greater amount of time and effort than predicted. In hindsight, with the exception of the

EEPROM software, little value was obtained by rewriting this software.

Time spent developing and testing custom implementations could instead have been used

58

to thoroughly test already existing implementations. If possible, it is strongly suggested that

future developers attempt to use already existing software standards.

3.5.8 Summary

The supporting software component of the ION satellite software system serves to fulfill

the third tier of software requirements. This software provides standard functionality often

required by higher level software such as the application and Application Manager components.

The majority of the functionality provided by the supporting software can be obtained through

the use of standard libraries or COTS-like pre written software packages.

3.6 Discussion of the System Design

The design of the ION Software System is the result of pressures associated both with the

hardware onboard the satellite and the poorly defined mission requirements. The entire ION

software can be considered a mechanism which allows the remote operation of a passive

collection of instruments onboard the ION satellite. The software itself makes very few

assumptions on how instruments are to be used, therefore allowing for the details of mission

requirements to be adjusted and invented as needed.

Both the differing functionality and the levels of functionality required of the software

system have been segmented through the use of application and device driver components. Such

segmentation allowed for relatively simple implementation of all of the functionality that was

expected of the ION satellite.

A number of limitations arise from the software design used, most of which result from

the use of multiple independent applications to implement the majority of the satellite operations.

There is no central oversight of system state because applications do not communicate how much

work they are performing or what the immediate future looks like. For example, it is not

possible to put the CPU to sleep for a few minutes in order to conserve power. Each application

must continuously be polled by the Application Manager in the event that there may be work to

perform. The risk that the system can become unschedulable exists, as there are no limitations

placed on the amount of work that applications may perform. It is entirely the responsibility of

the user on Earth create schedules that are possible to fulfill.

These two limitations can be solved if additional features are added to the ION software

59

system. Central oversight of system load could exist if applications provide additional feedback,

such as how full their schedule is and how much work they expect to perform in the next few

minutes, when returning the processor to the Application Manager. This would allow for more

intelligent allocation of processing resources and the ability to power down the flight computer

when no applications expect to perform work.

To limit the possibility of over scheduling the ION software system, some form of credits

could be used to allocate processing time to applications. A set total of credits could be available

to each application for each minute of operation. Upon consumption of all processing credits, an

application would not receive anymore processing time until new credits were granted.

Another large problem stemming from the use of independent applications to implement

subsystems, is the lack of support for data sharing between subsystems. For example, no single

piece of software has access to both magnetometer samples and solar cell current readings. This

makes the implementation of an autonomous process such as onboard attitude control

impossible. This problem could be solved with a more robust communications system which

allows for communication between applications. Such a feature, though, may run the risk of

destroying the segmentation that exists between subsystems. Furthermore, one of the

fundamental assumptions made in regards to ION operations is that the satellite would be

considered a passive collection of instruments whose use was to be scheduled. Intelligent, fully

autonomous processes were not expected to be supported by the ION software system.

Nearly every operation executed by the ION software system must be scheduled and

performed by an application. Even tasks which are semi-autonomous such as power

management or file system synchronization have been explicitly designed as operations which

must be scheduled. While this aids in the understanding of system performance and behavior, it

does make software development more difficult. In many cases software operations could have

easily been written to occur automatically every time an application received processing time.

Instead, in order to maintain the passive system design of the satellite, these operations were,

with additional effort, implemented as scheduled items.

One of the largest problems encountered during the implementation of the ION satellite

software system was testing. While testing of individual device drivers was very simple, the

original software functional requirements determined before system design did not specify any

requirements for the ability to test the complete software system. As a result, no mechanism was

60

designed which allowed for quick, easy, and transparent operational testing. Therefore, all

satellite operations had to be tested exactly as if they were being performed from a ground station

on Earth.

This was a very slow process as it required the creation and upload of config files

followed by a wait for the scheduled events to occur. It was not easily possible to see what

occurred while the system was running because system information can only be obtained from

files on the file system. The EventLog as well as any applicable data files had to be downloaded

in order to piece together the overall state of the system. This problem could have easily been

prevented if the original software functional requirements specified that the software system be

more transparent and easily testable.

Despite these frustrations, the software system that was designed and implemented for the

ION space satellite provides an amazing abstraction of the satellite, allows the very general use

of all hardware onboard, and provides flexibility that would otherwise not be available. While

the model of operations planned has not yet been "space rated" it is expected that there will be

few difficulties or unexpected limitations encountered during the lifetime of the ION satellite.

3.7 Summary of the System Design

The main components of the ION satellite software were outlined along with the

problems they solved. These four components were the direct result of the hardware design of

the ION satellite along with the ill defined mission specification.

The Dumb Device problem led to the development of a collection of modules known as

device drivers which abstracted away individual devices and performed the detailed functions

required for hardware device operation.

As a result of a relatively undefined mission specification given to the software

development team and the determination that the satellite could be considered a passive

collection of instruments, a set of independent modules known as applications were written.

These applications simulate what are normally hardware subsystems, are not able to

communicate with one another, and typically perform functions based upon a modifiable

schedule.

In order to manage operations of all subsystems and present the appearance of a single

satellite instead of a collection of independent subsystems, a software component known as the

61

system software was written. This software is responsible for providing processing time to

applications and managing satellite start up and shut down.

Finally, a large amount of software which provided basic functional support commonly

found in libraries was written. This software was classified into a component known as

supporting software.

62

APPENDIX A: FURTHER TECHNICAL DETAILS

Further technical details relating to the implementation of the ION software system will

be presented. The majority of these details are expected to be only of value to future satellite

software developers. An overview of all software reliability and safety mechanisms will be

provided along with details of the development process.

A.1 Software Reliability and Safety Features

A number of reliability and safety mechanisms have been mentioned in previous chapters.

These features will be summarized here.

A.1.1 Remote memory access

The communications protocols used by the ION satellite provide support to read and

write from arbitrary memory addresses of the SID. By maintaining a copy of the flight software

load binary with symbols on the ground, it is possible to read or write any software variable that

is statically allocated in memory.

A.1.2 NOP sleds

Portions of the ION software system routinely execute large contiguous blocks of NOP

instructions. It is possible for assembly instructions to be written over these NOP instructions,

directly into the path of execution, through the use of the previously mentioned ability to write

information to arbitrary memory locations from the ground. These instructions may perform any

small software fixes necessary or even make function calls to other locations in the flight

software binary, allowing for small, temporary changes to the satellite software to be made from

Earth.

A.1.3 Software upload

Since all of the ION software system is stored as an ELF format binary on the file system

it is possible to upload new versions of software to the satellite. If appropriately named, this

software will be loaded for execution by the ION bootloader instead of the default system load.

Unfortunately, a full system load is very large and a full replacement of the software

onboard ION would take approximately two weeks. It is possible to only replace individual

63

binary files because the software load onboard the file system is broken up across a number of

small files. This process would need to be done very carefully as no changes could be made to

the resulting memory locations of any code or variables which followed the changes.

A.1.4 System state checking

Three mechanisms exist to make sure that system state upon startup is safe. The

bootloader first looks for a valid system load that has been recently uploaded. If no such load

exists or if it is corrupted, the bootloader reverts to the default system binary which exists on a

separate file system.

Upon startup the system software checks the consistency of the main file system by

confirming a default set of config files. If there are any problems with these files, the entire file

system is recreated and a new set of default config files is written out.

Upon startup of the Application Manager, a file on the file system is read to determine the

reason for the last shut down. If no strange conditions caused the previous shutdown, then the

Application Manager restores the running state of all applications to before the previous

shutdown. If, on the other hand, this file does not exist or an error was the cause of the previous

shutdown, then the Application Manager starts only a minimal set of applications specified by a

default configuration.

A.1.5 Software watchdog timer

In addition to the hardware watchdog timer functionality present onboard ION, a software

watchdog timer is provided by the ION software system. The hardware watchdog timer of the

SH2 processor must be kicked approximately 50 times a second. This is performed by the

system timer interrupt service routine. In the event that the software system seriously

misbehaves, this service routine will not execute and the hardware watchdog timer will restart

the SID's processor.

Unfortunately, it is possible for the system timer service routine to continue firing even

though the software system may have entered an infinite loop or be otherwise broken.

Therefore, a soft watchdog timer exists which must be kicked once a minute. If this is not

performed, then the system timer interrupt service routine will not kick the processor's hardware

watchdog timer and the processor will be restarted.

64

A.1.6 Alarms and callbacks

One of the risks associated with cooperative multitasking is that applications may lock

up and not return control of the processor to the mechanism which allocates processing time. A

system of alarm callbacks was implemented to handle the possibility of application misbehavior

as a result of coding mistakes or hardware failure.

This mechanism allows the Application Manager to install a callback function to execute

one minute after providing processing time to an application. In the event that the application

does not return the processor within one minute, this callback will perform a context switch back

to the Application Manager which may then shut down the misbehaving application. For more

information refer to Section 3.3.5.

A.1.7 Reset Mode

Normal ION satellite operations are performed by uploading schedules of work to the

satellite. The work specified in these schedules is executed by a number of software applications

which make use of device drivers to operate hardware devices. Feedback as a result of work

performed is returned to Earth as downloadable data files.

A completely different mode of satellite operations known as Reset Mode also exists.

This mode is entered upon any critical software error or prior to a satellite reboot. In this mode

of operation a simple communications protocol allows for the direct use of hardware devices on

the ION satellite. For more information refer to Section 3.3.6.

A.1.8 System wide error reporting

A standard set of error codes exists in the ION software system. Nearly every major

function returns an ion_error variable which specifies any errors that may have occurred.

Error codes are very specific and allow for immediate determination of where and why and error

occurred. These errors codes are propagated throughout the entire software system and are

inserted into the EventLog, the beacon, communications protocol replies, and Reset Mode, if

necessary. This allows for multiple data paths to be used to provide specific feedback on any

errors that have occurred.

65

A.2 Details of Development

All development of the ION satellite software was performed in a Linux environment

using the GNU Binutils [18]. GDB was used to remotely debug code executing on the SID

computer through the use of the GDBStub monitor in the SID's EEPROM [16], [17]. CVS was

used to manage all code developed for the satellite [19]. Regrettably no bug tracking system

other than paper was used.

A simple, though extremely long, makefile, explicitly listing every code file, was used to

guide compilation of various portions of the ION software. A custom written linker script was

used to appropriately arrange binary code layout during the linking and relocation process.

The majority of all software was written in C++ or C, though it is based heavily upon C

style coding. Nearly every individual component of the software system is implemented as a

C++ class though each component is typically treated as a C module as opposed to a C++ object.

Where applicable C++ inheritance was used.

No generic memory management support existed or was written; as a result dynamic

memory was not generally available. Because new() and malloc() were not available all

variables are either statically allocated or allocated at run time on the stack. Lack of dynamic

memory also limited the number of C++ features which were usable. All variable types used

have been custom defined in order to aid in understanding of variable sizes and representations.

Names of variables are inspired by Hungarian notation. For safety, whenever possible, efforts

were made to write only synchronous code in order to limit the possibility of race conditions.

Very few interrupts are used and all context switches are performed in a controlled and explicit

manner.

Software development was usually performed by two person teams. One developer

would be be responsible for inventing, verbalizing, and freely coding ideas. The other developer

would provide feedback and observe to catch trivial errors in the details of implementation.

Code reviews were required prior to commitment of code to CVS.

Very little of the code used in the ION software system was not developed by the ION

software developers. To the best of the abilities of developers, efforts were consistently made to

understand every single line of code the SID computer would execute. This self imposed elitist

development philosophy required all software including bootloaders, operating systems, file

systems, application software, device drivers, and libraries to be written in house.

66

During the development process, immediate though unclean solutions, would be found to

problems faced. These hacks often required the creation of special cases or resulted in a

violation of some intuitive, though unverbalized, design. Such solutions were never taken.

Instead, problems would often be struggled with for days or even weeks despite the existence of

quick solutions. While this slowed the initial development process, such policy is highly

recommended as it greatly eases the later testing and maintenance of software.

Overall a combination of bottom-up and top-down development was used. As traced in

Chapter 3, low level device drivers were first developed. This was followed by high level system

software which was expected to provide processing time to some middle layer of application

software. Supporting software was written as needed. The implementation of the ION software

system finished with the quick and easy implementation of applications.

A snapshot of the source code to the software installed onto the ION satellite is available

on the Internet [20].

67

APPENDIX B: LESSONS LEARNED

B.1 Difficulties Encountered

During the development process of the ION software a number of difficulties were

encountered. Some of these were general difficulties which are common to CubeSat projects

whereas others were specific to the project management or technical details of the ION project.

The difficulties encountered are listed below along with suggestions for future developers. It is

hoped that a documentation of the difficulties encountered may be helpful in allowing future

academic small satellite projects to plan for and possibly prevent such difficulties.

B.1.1 Inheritance of project with no mission definition

The original design and selection of the hardware components onboard the ION satellite

was performed by a group of students who graduated one and half years into the project. At that

point the entire project was restaffed with new teaching assistants and new students who had no

knowledge of the formal mission requirements of the satellite.

As no formal mission specification detailing the specific operational requirements of the

ION satellite existed for the ION project, the new developers were forced to reverse engineer the

mission requirements of the satellite. As a result of informal discussion with faculty mentors and

assessment of onboard hardware, the software development team managed to invent what was

believed to be the satellite mission. This mission both guided and forced the implementation of a

very general software system.

The decision on what operations a space satellite should perform should not be left to the

invention of the software team despite the fun and power associated with such work. The lack of

such a specification gives software developers no direction on what to write, and its invention is

a distraction from the actual task of implementation of satellite functionality. Furthermore, when

satellite operational requirements are determined in this manner no oversight exists.

In addition to the obvious recommendation that a three to four year project not be

completely restaffed halfway through, the formal mission requirements of a satellite should be

very clearly documented at the start of the project. In addition to defining every operation a

satellite is to perform, this documentation should also include all data that is to be sampled,

requirements for sample resolution, and justifications for hardware design choices.

68

B.1.2 Regular student turnaround

The ION project was run as an engineering class in which students participated from one

to two semesters making student turnaround very large. This required constant retraining of new

students in order to bring them up to speed. In many cases, because students would be leaving

soon, it was very tempting to simply give students a small project to work on without giving

them an overview of the whole scope of the project.

While this saves time because effort is not wasted on teaching students details of the

satellite they will never encounter, this policy seriously limits the number of people involved in

the project who have any sort of global view. Despite the temptation to limit student

involvement to small manageable components, it is important to take the time to fully entrench

some of the more promising students. At least a few students or teaching assistants should be

involved who have been working on the project for longer periods of time and can provide

continuity across new semesters.

Student turnaround is inevitable in undergraduate projects, making it important to have

good, up to date primer documents which can be given to students. These primers should give

both a global overview of the project including history, as well as specific technical details of the

smaller projects students will be working on.

B.1.3 Use of a single central computer and "dumb devices"

The hardware design of ION made delegation of work to students very difficult. Because

there was only one flight computer onboard ION and it was completely responsible for the

operations of all of the hardware onboard ION, it was not possible to provide students with

hardware subsystems to independently develop according to some physical interface. Instead, all

development occurred on the single flight model of the SID computer which caused a large

number of scheduling conflicts.

This problem was partially eased as a result of the subsystem simulations provided by the

software system. It is nevertheless highly suggested that future CubeSat satellites attempt to use

a more traditional segmented hardware design in which intelligent subsystems are used.

Such subsystems should each perform their own processing and data management using

whatever processing capabilities are required. A digital communications bus could be used by a

69

central flight computer to communicate with these subsystems allowing the central computer to

request data or poll status. With clever software development, it may be possible to allow the

central flight computer to upload software updates to each of the individual subsystems,

maintaining the code update benefits that the use of a single computer provides.

B.1.4 Difficulties due to nonstandard hardware

ION's flight computer, the SID, is a unique computer of which only approximately a

dozen exist. This computer was designed by an engineer who provided a full schematic but

otherwise little documentation of the type that was needed by undergraduate engineering

students. There existed no community on the Internet which could provide help and support as

there are with many other types of embedded processors and hardware.

The proprietary nature of the SID prevented the easy adoption of standard software and,

therefore, a large amount of pre-existing software such as operating systems, device drivers, and

file sytems was needlessly rewritten. Furthermore as a result of the relatively sparse

documentation of this proprietary hardware an enormous amount of time was spent reverse

engineering the design decisions and operation of the SID. For example, over three weeks were

spent on development of software to make the real time clocks onboard the SID work reliably.

In light of these difficulties, it is strongly recommended that small satellite projects

continue to follow the philosophy of using COTS components and standardized platforms.

B.1.5 Difficulties in getting hardware working

An enormous amount of development effort of the ION software system was devoted to

the creation of device drivers to use the hardware onboard the ION satellite. As previously

mentioned, it is recommended that standard, easy to use hardware components with existing

device driver implementations be used to limit such efforts.

If this is not a possibility, it is critical that the software development team have access to

good electrical engineering tools, knowledge, and experience. Access to logic analyzers and

power supplies, familiarity with electrical engineering, ability to interpret data sheets, an ability

to speak with engineers, and experience implementing specifications are all critical requirements

for a software development team.

70

B.1.6 Lack of embedded development experience

Software development on embedded systems requires practical knowledge that is rarely

taught in computer science curricula. The majority of incoming student software developers on

the ION project had previously had no embedded software development experience.

Furthermore, no access to faculty mentors with embedded experience existed and few faculty

approached at the University of Illinois had any interest in taking time to teach students.

This created a very steep learning curve for both teaching assistants and students as

fundamental concepts of embedded development had to be independently learned and reinvented.

It is extremely important that software developers have embedded systems development

experience or are provided with resources or basic instruction on the subject.

B.1.7 Changing development timeline

The delivery and launch dates of the ION satellite were delayed over five times granting

an additional one to four months of development and testing time after each delay. At nearly

every point in the development of the ION satellite, a launch date loomed approximately three to

four months away. This regularly forced hardware and software design decisions which

supported quick, simple, and understandable implementations but provided both limited

functionality and limited redundancy.

With one month to two months remaining before launch, the launch date would be

delayed, granting additional time. The state of the software system would then be reevaluated

and a wishlist of features would be accepted for inclusion into the system. Inclusion of these

new features into the software system and the general improvement of the system often required

a great deal more effort than what would have been required if such work had originally been

performed. This iterative system design process resulted in a large amount of additional work

which could have been prevented if better knowledge of project duration had been available.

Similar small satellite projects should make serious efforts to have accurate information

about the duration of the project and about expected launch date changes. While launch dates are

typically not under the control of small satellite developers, better information should be

provided within the CubeSat program so that developers may more effectively plan the

development process.

Serious consideration should be given to a development process in which the duration of

71

the project is absolutely determined ahead of time, the project is implemented according to this

schedule, and then obtainment of a launch is considered.

B.1.8 Bad interface definitions

It was not until two and a half years into the ION project that a formal set of documents

detailing the electrical interfaces between the central computer and the hardware components

existed. Previous to that point all software development of device drivers required that software

developers guess at interfaces and regularly harass hardware developers for information both on

how a hardware component worked and for information on any assumptions that hardware

developers had made.

Additionally, as hardware development continued, the lack of well defined electrical

interface specifications allowed hardware developers to freely make changes to device interfaces,

requiring software developers to regularly reimplement portions of the software system. While

this process was eased as a result of the abstraction device drivers provided, this still required a

great deal of time and effort.

While it is understandable that at the beginning of a project is it not clear how all of the

hardware components operate, it is important to create a single document specifying electrical

interfaces as early as possible. This document should clearly explain how all hardware

components operate, hardware pinouts, what functions will be expected of the software system,

and all assumptions that are made by both software or hardware teams. In the ideal case that

standard buses such as I2c or USB are used to communicate between intelligent hardware

components, this interface needs to specify only the logical communications protocol.

B.1.9 Duration and scope of project

The ION satellite project was very ambitious and far too complicated for an

undergraduate student project. As a result of the large complexity, scope, and duration of the

project only one to two people involved in the project had a complete view of it. Furthermore,

the details of the project were extremely overwhelming to the new students who joined the

project each semester. Students would often loose interest as a result of the complexity and

difficulty in grasping the scope of the project.

Additionally, the duration of the project caused strain on those involved. After one to two

72

years of involvement even graduate students involved needed to focus on other classwork,

graduating, and moving on to other projects.

B.1.10 Ineffective data organization

The ION satellite project was consistently plagued by horrible documentation and an

unusable data management scheme. An enormous amount of documentation existed but very

little of it was dated, logically organized, easily accessible, or credited properly. As a result it

was very difficult for developers to determine what documentation was applicable as neither

dates nor authors of changes to documentation could be determined.

One of the documentation requirements of the ION project was that each semester a

project final report was to be submitted. The creation of this documentation typically consisted

of each team appending to a single 50 megabyte document that had been in existence for years.

Not only did this document become completely unreadable as a result of its size, but it continued

to be carried forward completely outdated and with contradicting information.

In the future it is recommended that a single information repository exist for all

information. The repository should be easily accessible and logically organized by teams. A

clear distinction must be made between what is historical data that is being kept for posterity and

what is currently applicable data that is being updated. Every piece of documentation should

have a clear revision history including dates, authors, and reasons for changes. Each piece of

documentation should have an individual or limited group of individuals responsible for its

maintenance.

B.1.11 Aloof faculty involvement

The involvement of faculty advisers on the ION project was very limited. The entire

project was carried and directed by what seemed good ideas to the students and teaching

assistants with occasional input from faculty when explicitly queried.

Generally, the faculty had absolutely no knowledge of any of the technical details of the

project or the actual project state. All faculty awareness of project details was the result of oral

student reports given during weekly meetings. Unfortunately, because of self interest in

obtaining good grades, the project state and work being performed was always spun to give the

appearance that there were no problems.

73

As a result of this, up until the last year of the ION project, faculty advisers consistently

believed that the project was much farther ahead than it was in reality. While this was not a

problem because faculty did not make any decisions and all development was student driven, this

did result in very little formal pressure to perform quality work. Generally, student efforts lacked

any quality control as work was performed as pleased with only self-enforcement or mean

teaching assistants creating any pressure to make sure things were done correctly.

It is strongly suggested that faculty provide much more oversight on such projects.

Faculty should be involved with technical details and should provide more direction and

enforcement of proper industry standard procedures.

B.1.12 Difficulties in testing

Testing of both the ION software system and the ION satellite was very difficult and time

consuming. The software requirements originally determined for the satellite did not include any

requirements for simple testing mechanisms. As a result, no mechanism was designed which

allowed for quick, easy, and transparent operational testing. All satellite operations had to be

tested exactly as if they were being performed from a ground station on Earth.

Additionally, no formal testing procedures or milestones were outlined for the testing of

the ION satellite. This made it difficult to keep track of what portions of the satellite hardware

and operations were working and trustworthy, resulting in much redundant testing.

It is suggested that software requirements should include testing requirements so that any

software system developed is designed for test. Additionally, formal operations testing

procedures should outlined before testing of a satellite begins so that testing is performed in a

systematic manner.

B.2 General Comments

Software development of the ION software system consisted of much more than just

software development. The entire mission of the satellite was invented and defined by the

software team based upon a general knowledge of what the satellite was to do along with the

hardware onboard. While this is not that much of a problem as the primary goal of the satellite

was an educational experience and not the construction of a commercial satellite, this is a large

burden to place on a team whose formal task is to write software.

74

An unknown mission requirement led to the implementation of a generic and flexible

software system for the ION satellite. This created quite a bit more work for the software team

than just making a satellite work. The end task that was given to the software team could be

summarized as follows: “Here is a one of a kind computer and a collection of hardware. No one

is entirely clear on how either work, but we'd like you to make them work and do what we have

in mind for them. But we're not going to tell you exactly what we want to do with this

hardware."

An enormous amount of time and effort was spent "reinventing the wheel." While

educationally very useful, there is a feeling of wasted effort as the end product developed is in no

way better than what had previously existed. Furthermore, little of the product created is in

anyway reusable outside of the scope of the ION satellite project.

The ION project was certainly meant to be an educational experience to students and

teaching assistants. A great sense of accomplishment and educational value exists with the

development of a bootloader, operating system, file system, collection of application software,

and collection of device drivers. Unfortunately, only two software developers truly obtained the

benefits of this experience. These two students implemented an entire operating system and

supporting applications given absolutely nothing and now appreciate the work and design

decisions behind standards such as Linux, TCP/IP, FAT16, ELF, malloc(), posix, and

cooperative multitasking. Unfortunately, all other software developers were merely transient

students who performed a small piece of work and did not gain the benefit of implementing a full

satellite software system from scratch. To these students, it may have been of much greater

value if more standards had been used as they could have seen and learned the use these

standards in a realistic environment.

Furthermore, it would have been of greater benefit to the ION satellite's success to decide

to trust and use standard components. Instead of devoting time and resources to rewriting

existing software with intentions of making it trustworthy it may have been more beneficial to

simply use the time and effort to thoroughly test existing software standards.

While there is great appeal in developing all software from scratch, it is of little benefit to

do so. One of the guiding principles behind the current small satellite movement is the use of

commercial off the shelf hardware components. This same philosophy should be adopted to

software.

75

While the design process outlined in Chapter 2 of this paper follows a very intuitive and

clean path, the actual development process was never conscious of this path. The development

path taken has only been realized upon reflection. In reality, nothing was this clear and while

what was outlined did happen as outlined, it was never this explicit of a decision or process.

At the time of writing, the ION satellite has not yet been launched. How it performs in

space and whether the effort outlined in this paper will be successful is still to be determined.

Regardless of satellite success, the experience gained from the development of the ION satellite

software system is absolutely invaluable and it is hoped that future engineering students have

similar opportunities.

76

REFERENCES

[1] Surrey Space Centre, University of Surrey, "Small satellites home page," April 2005,
http://centaur.sstl.co.uk/SSHP/index.html.

[2] K. Baker and D. Jansson, "Space satellites from the world's garage - the story of
AMSAT," presented at the National Aerospace and Electronics Conference, Dayton,
Ohio, May 1994.

[3] M. Long, A. Lorenz, G. Rodgers, E. Tapio, G. Tran, K. Jackson, R. Twiggs,
and T. Bleier, "A CubeSat derived design for a unique academic research mission in
earthquake signature detection," presented at 16th Annual AIAA/USU Conference on
Small Satellites, Logan, Utah, 2002.

[4] L. Alminde, M. Bisgaad, D. Vinter, T. Viscor, and K. Z. Østergard, "The AAU-CubeSat
student satellite project : architectural overview and lessons learned," in Proceedings of
the 16th IFAC Symposium on Automatic Control in Aerospace, 2004.

[5] S. Waydo, D. Henry, and M. Campbell, "CubeSat design for LEO-based Earth science
missions," April 2005, http://www.cds.caltech.edu/~waydo/papers/IEEE2002.pdf.

[6] B. A. Larsen, D. M. Klumpar, M. Wood, G. Hunyadi, S. Jepsen, and M. Obland,
"Microcontroller design for the Montana Earth orbiting pico-explorer (MEROPE)
CubeSat-class satellite," April 2005,
http://www.ssel.montana.edu/merope/abstracts/F196_1.pdf

[7] J. Gruenenfelder, "Operating system for control of small satellite systems," presented at
16th Annual AIAA/USU Conference on Small Satellites, Logan, Utah, 2002.

[8] B. Twiggs and J. Puig-Suari, "CUBESAT design specifications document,"
Stanford University and California Polytechnical Institute, August 2003.

[9] CubeSat Program, California Polytechnic State University, "CubeSat program website,"
April 2005, http://www.cubesat.org/index.html.

77

[10] F. Rysanek, J. W. Hartmann, J. Schein, and R. Binder, "Microvacuum arc thruster design
for a CubeSat class satellite," presented at 16th Annual AIAA/USU Conference on Small
Satellites, Logan, Utah, 2002.

[11] J. A. Carroll and M. D. Fennell, "An autonomous data recorder for field testing,"
April 2005, http://www.ntsb.gov/events/symp_rec/proceedings/authors/carroll.pdf.

[12] W. A. Beech, D. E. Nielsen, J. Taylor, AX.25 Link Access Protocol for Amateur Packet
Radio, Tucson Amateur Packet Radio Corporation, 1998.

[13] Dallas Semiconductor, Appl. Note 214, April 2005,
http://www.maxim-ic.com/appnotes.cfm/appnote_number/1189.

[14] A. S. Tanenbaum, Modern Operating Systems. Upper Saddle River, NJ: Prentice-Hall,
2001.

[15] Wikipedia contributors, "Co-operative multitasking," Wikipedia: The Free Encyclopedia,
April 2005, http://en.wikipedia.org/wiki/Cooperative_multitasking.

[16] B. Gatliff, "Embedding with GNU: the GNU debugger," April 2005,
http://www.embedded.com/1999/9909/9909feat2.htm.

[17] B. Gatliff, "Embedding with GNU: the GDB remote serial protocol," April 2005,
http://www.embedded.com/1999/9911/9911feat3.htm.

[18] Free Software Foundation, GNU Binary Utilities Manual, April 2005,
http://www.gnu.org/software/binutils/manual/index.html.

[19] Free Software Foundation, CVS-Concurrent Versions System Manual, April 2005,
http://www.gnu.org/software/cvs/manual/index.html.

[20] M. Dabrowski and L. Arber, ION Satellite Software Code, April 2005,
http://www.interave.net/cubesat/Technical_Data/ion-sat-FA03/.

78

